

جورج Fاموف

جورج گاموف

(ويراستٔٔ جديد با اصلاحات و اضانات)

ترجمهٔ رضا اتصى
ويراستار: محمود مصاحب

تهران ITYT

This is an authorized Persian translation of

BIOGRAPHY OF PHYSIC

by George Gamow
Copyright 1961 by George Gamow
Published by Harper \& Brothers Puplishers, New York

Fifth Print, Tehran 1993

انتشارات و آموزش انقلاب اسلامى (شركت سهامى)

مبرگذشت غيزيك
رضا اتصى
 IFVF (جاب اول از ويراسته دوم) محمود مصاحب 100.0.

+ شيرين

نام كتاب نويسنده

مترجم
چاپاول
حاب چنجم
ويراستار
تيراز
ليتوكرانى
چاپ

حق جاب محفوظ است
دنتر مركزى و فررنشاءا بزرگ كتاب: تهران، خيابان افريقا، جهار راه حقانى (جهانكودك)،
 GAFOYY: تلغن: © فررشگًاه شماره r: خيابان انتلاب جنب دبيرخانه دانشگا، تهران

فهر ست مطالب

1
$r 1$
ir
$1 \cdot v$
$1 F V$
$1 A v$
res
ris

> : طلوع علم فيزيك

فصل اول
: دوره تاريكى و ونسانس :
فصل دوم
فصل سوم : خداوند كفت ارنيوتن بماند!!) :
فصل حهارم : : حرارت همحچون انرزیى
فصل بنجّم : عصر برق
فصل ششم : انقلاب نسبيتى
:
فصل هفتم
: هستهٔ اتمى و ذرات ابتدايى :
فصل هشتم
r^』
نـــــايـه

(بالا) نخستين عكس اتات ابرى از تبذيل مصنوعى هستهاىی. (بايين) شكست هسنئ بور و بتـيل آن به سه ذرة أللنا

(بالا) سيلكوترون دانشگاه كولررادر كه يك تطب آهنرباى برتى و برتو را نشان مىدهد (بإين) برشى از بواترون دانسگا، كاليفرنيا.

(بالا) آنون بمب اتى در نوادا. (بايين) رئكتور استخرى در ارى ريج.

(بالا) تشكيل يك بيون و تلاشى ناشى از آن به يك موئن و الكترون. (بايين) مجموعهاى از حوادث در يك اتان حبا

مقلمهٔ مؤلف

كتابهاى مربوط به علم فيزيك دو دو نوع است. يكى از آنها كتابهاى درسى به منظور آمو

 فقط فهرستوار ذكر مىكند.
در اين كتاب سعى كر دهام كه راه ميانهاى را اختيار كنم. مثلاً محاكمئ كَاليله و قوانين

 است. در هر يك از هشت فصل كتاب بحث در اطراف يكت يا حداكثر دو جهر

 فيز يك يافت مىشود و نيز بسيارى از موضوعهايى كه در كتابهاى درسـى فيزيكك مـهم

است، از قلم افتاده است. هدف كتاب اين است كه به خواننده نشان دهــ عـلم فـيزيكك چییست و فيز يكدانان چگگونه كسانى هستند و6 درنـتيجه، آن انـدازه عـلاقه در خـوانـنده پيد آورد كه بتو اند با جستو جو و كاوش در كتابهاى مربوط به موضوع مورد علاقهَ خود مطالعات خو يش را دنبال كند.
كسى كه حیزهايى دربارهُ مردان بزرگك گذشته و حال مى خواند، بيو سته مايل است حهرهٔ واقعى آنان را خوب بشناسد. اما به علت محدود بودن تـعلاد صفحـات عكسدار كتاب، بر آن شدم كه اين صفحات را به عكسهاى واقعى انواع پديدههاى فيز يكى از قبيل طيفهاى نور، تفرق الكترون، و رد ذرات هستهاى در اتاق ابرى اختصاص دهم. به هـمين جهت لازم آمل تصاوير فيز يكدانان در متن كتاب رسـم شود. خون خودم در اين فن هنرى نداشتم، ناگزَير شدم كه از وسايل كمكى از قيل تصوير افكنى اسلايدهاى عكاسى برروى كاغذ رسم استفاده كنم، وتصاوير حاصل به اندازهُ كافى شــبيه بـه اصـل در آمـلده است. اميدوارم اين كتاب به خو انندههاى نو جوان (و شايدهم بـه اشخـاص سـالخوردهتر) انگگيزه و تحركى براى مطالعهٔ علم فيز يكك بدهد؛ هدف اصلى كتاب نيز همين است.

دانشگًاه كولورادو
جورج گامو

طلوع علم فيزيك

رسيدن به منع و سرجشمهٔ اصلى عـلم فـيزيكك همـان انــازه دشـوار است كـه رسـيدن

 را به اقيانوسها مىريزند.
 پيراكنده بودند كه "انسان اوليه"، يعنى انسان متفكر، بر آن سكونت داشتر اشتر الما جنين بهنظر
 اكنون آنان را "يونانيان باستان" مىناميمَ، يا دستكم مردمى كه فرهنگك "انسانهاى متفكر "

اوليه را به ارث بردهاند. اين نكته جالب توجه است كه ملل قديمى ديگر از قبيل بابليان و مصريان با آنكه در توسعه و تكميل رياضيات و نجوم سهيم بودهاند، در بـيشرفت عـــم فيزيكك هيج سهمى نداشتهاند. توضيح ممكن براى اين نقص در مقايسه بـا عـلم و دانش

 كلمه يونانى الكترون (
 گوسفندش، متوجه شده كه كهربا خاصيت جذب تكههاى حوب يو يوك و سبك را با بهدست

قانون فيثاغورس مربوط به تار ها

درحالى كه يسداكردن ترتيب تقدم و تأخر زمانى اين كشفيات افسانهاى دشوار است، كشف فيلسوف يونانى، فيناغورس، كه در اواسط قرن ششم بيش از از ميلاد مىزيست، كامانلا
 دربارهٔ رابطهُ ميان طول تارها در آلات موسيقى پر داخت كه كه تركيبات ممامنگگى از اصوات

 نسبت Y:Y مربوط بود به "يكُبنجم"، و نسبت F:Y مربوط بود به "يكت

ط
كشف شايد نخستين بيان رياضى يك قانون فيزيكى باشد و بتواند همحون نخستين گام در
 ممكن است كشف فيثاغورس را حنين بيان كنيم كه بسامد، يعنى عده ارتعاشات در ثانيه، در

 ارتعاش در ثانيه

ج ار ارتعاش در ثانيه

يك پِنجم

شكل 1-1
قانون فبثاغورس در بارة تارها
 (شكل 1-1 ج، د). جون آن قسمت از مغز كه بِامهاى عصبى از گوش به آنجا مىرسد

اين واقعيت را توضيح دهند)، طول تارهايى كه مماهنگى كامل را توليد مىكند بايد بـه نسبتهاى عددى ساده باشند.
با اين بيان. فيثاغورس از اين مم يك قدم فراتر زفت: حون حركت سيارات (ربـايد

 اين بيسنهاد، شايد نخستين مثال از حيزى باشد كه اكنون اغلب آنرا "تظريهُ پاتولوزيكِ فيز يكى " مىناميم.

ذيمقراطيس ‘ اتمشناس

يك نظريئ فيزيكى مهم ديگر، كه در اهطلاح جديد توانسته است "نظريهاى بدون

 مىانديشيد و تعليم مىداد. ذيمقراطيس اين نظريه را البراز كرد كه هر هر جسم ماري مادى تجمعى است از ذرات بيشمار جنان خردى كه جشم آدمى قادر به ديدن آنها نيست آريّ وى اين اين ذرات
 مادى رابه اجزای بسيار ريز نشان مىداد. ذيمقراطيس عقيده داشت كه حهار نوع مختلف

 آب بود. گيامى كه تحت تأثير اشعئ خور شيد از خاكك مىروييد، اتمهاى سـنگك و آب

 اتمهاى آتش (شعله) را آزاد مىكند، و اتمهاى سنگٌ (خاكستر) را بهجا مى گذارند. وقتى

طلوع علم فيزيك

 اتمهاى آتش مى ييوستند و اجسامى توليد مىكردند به نام فلزات. فلزات ارزانى، مانى ماندل آهن،

 نتيجه اگر مى توانستند باز هم اتمهاى آتش بر آهن بيفزايند، قادر به ساختن طلاى گرانبها :ود
امروزه، اگر دانشجويى اين مطالب رادر مـقدمهٔ امتحـان شـيمى خـود بيـان كـند، .
 إز راه تركيب كردن فقط معدودى از عناصر شيميايى اصلى بيشُك درست درس بود و و اكنون پائئ و اساس شيمى امروزى است. اما، از زمان ذيدقراطيس تا زمان دالتـن بـيست و دو قـرن كَذشت تا درستى همه حيز ثابت شد.

فلسفهُ ارسطويى

يكى از نامداران يونان باستان مردى بود به نام ارسطو كه از دو دو نظر شهرت يـافت:

 هفده ساله بود كه به آتن رفت و به مكتب فلسفى افلاطون يوست و تا تا مرگك افـلاطون،
 يش آمد تا عاقبت به آتن بازگشت و يك مكا مكب فلسفى در لوكيونّ تأسيس كرد. بيشتر

در باب علوم سياسى و مسائل گوناگون شناخت حيات، خاصه دربارة طبقهبندى گیاهان و جانوران، دارد. اگرحه ارسطو در تمام مباحث كارهاى عظيمى كرده كه انديشئ انسانى را

 كرده است. نقطه ضعف ارسطو در تحقيق بديدههاى فيزيكى بايد مربوط به اين اين واقعيت
 بـ رياضيات نداشت. نظريههاى وى دربارئ حركت اجسام زمينى و اجسام آس آسمانى شــايد

 در دانش" بهشمـار مـــرفت، و هـرگونه تـحقيقى را دربـارة طـبيعت و جـنس جـيزهـا غيرضرورى مىساخت.

قانون ارشميدس درباره́ اهرمها

دانشـمند نـامدار ديگـرى از دوران بـاستان، كـه حـدود يك قـرن آس از ارسـطو

 خودش، قبر او باكرهاى محاط در يكك استوانه مشخص شده است. در ركتا رـابى كه عنوانش هيزاميت (ريگُ شمار) است، روش نوشتن اعداد بسيار بزرگُ را از راه نسبت دادن مر تبهاى

Y Y O طلوع علم فيزيكك
به هر رقم، بنابر محل آن رقم در عدد منظور ‘، بسـط داد، و آنرا بـراى نـوشتن تـعداد دانههاى شن موجود در كرمایى به حجم زمين به كار بر بست. دركتاب معروف خود، درباره تعادل سطوح (در دو مجلد)، ارشميدس قوانيى اهرم
 يك خوانندهٔ امروزى سبكت نگارش ارشـميدس تـا حـدى يُـقيل و هـرطول و تـفصيل

 در هندسءٔ اقليدسى متداول است، با (فرضيههايى)، بيان كرد، و از آنها (يبينهاداتىى) را نتيجه

F F نعدادى هزارگان، و غيره.

○ 1 سركذشت فيزيك
در اينجا آغاز جلد اول را نقل مىكنيم.
1 - وزنههاى متساوى به فواصل متساوى در تعـادلند، و وزنههـايى متسـاوى در
فواصل نامتساوى در تعادل نيستند، ولى متمايلند به وزنهاى كه در فاصلة بز بركتر است. Y - و و افزوده شود ديگر در تعادل نخواهند بو د؛ ولى متمايل به سوى وزنهاى هساى هستند كه افزايش

يافته است.
「 - بـ هم هين نحو اگر جيزى از وزنها بر برداشته شود، ديگر در تعادل نخواهند بوده،

منطبق شوند، مراكز ثقل آنها نيز بر يكديگر منطبق خو اهند شُ شد
هـ ـ اگر شكلها نامتساوى ولى متشابه باشند، مراكز ثقل بهطور متشابه قرار خو اهند
گرفت. اگر از نقاطى كه نسبت به اشكال متشابه مشابهند، خطوط مستقيمى با زوايـاى مساوى رسم شو د، اين خطو ط زواياى متساوى با و جههایاى مربوط میى سازند.
 آنها نيز در حال تعادلد؛ حِنانجه با همان نوامل باشند (آيا اين واضح است؟ (در هر شكل كه محيط آن در يك سو مفعر است، مركز ثقل بايد درون شكل - V

باشد.
اين فرخيههاى مسلم بانزده يشنهاد به دنبال داشت كه بهوسيلةُ استدلالهاى منطقى از
 بيشنهاد ششم را، جون شامل قانون اصلى اهوم است، شرح مىدهيم.

9 طلوع علم فيزيكك
پيشنهادها:

I - وزنههايى كه در فواصل متساوى به حال تعادلند متساويند
Y - وزنههاى نامساوى به فواصل متساوى متعادل نـخواهـند بـود، ولى متـــايلند
به سوى وزنةٔ بز گتر

「 - وزنههاى نامساوى در نواصل نامساوى متعادل خواهند بـود (يـاممكن است متعادل باشند)، هرگاه وزنهٔ بزرگتر در فاصلة́ كوتاهتر باشد

آ اگر دو وزنهُ متساوى داراى يك مركز ثقل نباشند، مركز ثقل آن دو، وقتى كه با
هم هستند، نقطهُ وسط خطى است كه دو مركز ثقل را به يكديگر متصل مىكند.
ه ـ اگر سه وزنه مساوى داراى مراكز ثقلى بر روى يكت خط مستقيم به فواصـل
متساوى باشند، مركز ثقل مجموعهُ آنها منطبق است بر مركز ثقل وزنئ وسطى.
اكنون به دليل بيشنهاد ششم توجه مىكنيم، و به خاطر خواننده آنرا اندكى به بيان
امروزى در مى آوريم:
1 - دو وزنه در فواصل معكوساً متناسب با وزن خود به حال تعادلند.
فرض كنيد كه وزنههاى A و B نسبت به هم سنجش پـذيرنده و و مراكز ثــقل Tنـهـا
بهوسيلة نقاط نمايش داده مىشود (شكل

الف

برمان ارشميدى براى قانون اهمر

ه > يعنى نــبت در رزنه بوسبلاكـرماى منطلى از تبيل

خط $\alpha \beta$ را رسم كنيد و نقطهُ ررا حنان بر روى آن بيدا كنيد كه

$$
\mathrm{A}: \mathrm{B}=\overline{\beta_{\gamma}}: \overline{\gamma \alpha}
$$

بايد ثابت كنيم كه γ مركز ثقل دو وزنه است، وقتى كـه بـا هــم در نـظر گـرنته شـوند.
 مشـتركى بـرایا بسازيد. آن وقت كه $\overline{\mu v}$ باشد.
وزنهٔ Ω را حنان اختيار كنيد كه همـان انـدازه شـامل A بـاشد كـه s شـامل
است، درنتيجه:

$$
\begin{gather*}
\mathrm{A}: \Omega=\overline{\mathrm{s} \delta}: \overline{\mu \nu} \\
\mathrm{B}: \mathrm{A}=\overline{\gamma \alpha}: \overline{\beta \gamma}=\overline{\delta \varepsilon}: \overline{\mathrm{s} \delta} \tag{ولى}
\end{gather*}
$$

در نتيجه:

si
 قستهاى so و قسمتهاى B برابر با تعلاد قسمتهاى A را بر نقطه ميانٔه هر قسمت A ميانه هر قسمت را آن وقت مركز ثقل قسمتهاى Aكه در فواصل متساوى از so قرار گرفتهاند دره ،

 از A B B تشكيل يانته مجموعهاى است از وزنههاى متسـاوى كـه در فواصـل مت متساوي بر روى

طلوع علم فيزيك 11 ج

است كه كميت وزنههاى A و B گنگك هستند.
كشف اصل اهرم و موارد استعمال گوناگون آن، هيجانى در دنياى قديم بهو

 ساختن ماشينهاى جنگى سهم مهمى در دفاع از شهر داشت. يلوتاركك مى نويسد:
 نيروى معين ممكن است هر وزنهاى را حركت داد و، به اتكاى قدرت استدلال خويش،
 برود، آن جهان رانيز مىتوانست حركت دهد. هيرون منعجب شد و و از وى تقاضا كا كرد كه

 كذارد، خودش در جايى دور از كشتى نشست و بدون جندان تلانیى تلانى به آسانى با به راه انداختن جند قرقرة مركب بو سبلهُ دست خود، كشتى را به آرامى حنان به سو سوى خـود كشيد كه گويى بر روى آب مى لغزنم.

○ \bigcirc سرگذشت فيزيك
اصل اهرم نقش بسيار مهمى در تمام شئون زندگى دارد: از فردى روستايى كه ديلمى

 مفهوم مكانيكى بسيار مهمى را از كار انجام يافته توسط يكت نيروى مؤثر بشُ:اسأنيم. فرضى

 مى موانيم با فشار آوردن بر دستهٔ ديلم، با نيرويى سه بار كوحكتر از نيروى جاذئ وأ وارد بر
 بـلند مـىشود (مى گیيريم كه حاصلضرب نيرويى كه دسته ديلم را به پايين مى كششد در مقدار جابهجا شدن آن، برابر است با وزن سنگُ ضربدر مقدار جابهجا شدن آن. حاصلضر بـر نيرو
 قانون ارشميدس درباره اهرم، كار انجام يافته بد وسيلئ دستى كد بر سر بلند ديله فشار مى آورد.
 به هر نوع كار مكانيكى تعميم داد. در نتيجه، مثلاً، كارى كه باربران برایى بالا بـردن يـكـ بـي

 راست آن.
بيانوى بزرگك به طبقه سوم ساختمانى انجام مىدهند، برابر است با كارى كه براى بالا بردن سه يِينوى بزرگك به طبقة اول آن ساختمان بايد انجام دهند ${ }^{\text {آ }}$
 فرامم خوامد شد. اما، در ابنجا، نقط ما دربار:كار مريوط بَ بالا بردن واتمى اشباى سنگين گفت وگر مىكنيم.

طلوع علم فيزيك O

اصل برابرى كار انجام يافته بر دو سر يك اهرم مىتواند به اسباب مشابه ديگـرى،

 (شكل ه - ا)، وزنه به اندازة مسافتى (1) برابر با طول (d) ريسمان كشيده شده بالا خواهد

 كشيده شده بالا خواهد رفت.

قانون ارشميلس درباره اجسام شناور و غوطهور

شايد معروفترين كشف ارشميدس، قانون وى دربارئ وزن اجسام غوطهور در يكك مايع باشد. تصادفى كه منجر به اين كشف شد، توسط ويتروويوس ' ' در ضمن مطالب زير

در مورد ارشيدس، با آنكه كثفيات شكغتانگگيز و گوناگون فراوانى كرده است، هنوز

 زرينى در يك معبد بگذارد و آنرا وقف خديايان فنانايذير كند. برايى ساختن اين تايج،

 زيرا در حال دويدن به يونانى فرياد زد "يافتم! يانتم!"

 كاملا از آب بر كرد و نقره را در آن فرو برد. مقدار آبى كه از ظرف بيرون ريخته شـل،

طلوع علم فيزيك
همححم بود با نقرة فرو رفته در آب ظرف. ستس نقره را الز آب بيرون آورد و با پيمانهاى
 به يك مقدار معين آب را يِيداكرد. سِ از اين آزمايش تكه طلا را نيز در ظرف بر از آ آب فرو برد ور و بس از آنكه آنرا بيرون آورد و ماند بيش اندازه گيرى كرد، دريافت كه آب كمترى از ظرف بيرون رين ريخته
 بالاخره با ير كردن مجدد ظرف آب و فرو بردن تاج در همان مقدار آب، دريافت آبى كه

 نقره با طلا مخلوط شده است و به اين ترتيب دزدى زركر را را آشكار ساخت.

اثبات قانون ارشميدس كه توسط خودش در كتاب در باره اجسام شناور آمده است،

 ارشميدس را با بيان جديدترى نقل مىكنيم (شكل 9 - 1). فرض كنيد كه نخست يك

7

كرءٔ آهنى و يكك كره́ هلاستيكى نازك به همان قطر و هر از آب را اختيار كرده بـاشيم
 صورت خواهد بود كه گويى آب درون يوستؤكروى درست جزئى از آب سطل است، و

 سطل، با نشان دادن درجهٔ صفر ترازو، تحمل كـرده است، تـغير آب بـه آهـن مـوج آ آ
 ترازو نشان مىدهد. بنابراين نتيجه مى

 مى شود.

ارشميدس، يكك مشاور نظامى
ارشميدس گذشته از آنكه رياضيدانى نـامدار و مبتكر عـلم مكـانيكك بـود، اگـر

 است، ظاهراً در آبياى و براى بالا كشيدن آب زيرزمينى از معادن به كار مى برفته است.
|Y O طلوع علم نيزيك

شكل -

 شركت و اظهارنظر ارشميدس در امور جنگگ، ظاهراً از زمانى آغاز شد كه او طرز كار قرقره را به هيرون نشان داد. بنابر توصيفى كه توسط پلوتاركك از زندگى ماركلوس

هيرون كه تحت تأثير آزمايش نهايسى ارشميد قرار گرفته و متوجه نيروى هنرى وى شده بود، او را وأدار كرد كه برايش ماشينهايى تعرخى و دفاعى بسازد كه در هر نـوع جنگگ موضعى به كار رود. خود وى هرگز از اين ماشينها استفاده نكرد، زيرا قسمت عمده: زندگى خويش را براى دوزى جستن از جنگث و مراسم صلح و آزادى صرفكرد. اما، در آن زمان ماشينهاى او مردم سيراكوز رادر آراشش نگاه داشت و، درضسن، سازندة آنها
نيز در آرامش به سر برد.

درنتيجه وقتى كه رو ميان از راه خشكى و دريا به مردم سيراكوز حمله كردند، مردم از وحشت ياراى سخن گفتن نداشتند و فكر مىكردند كه هيج چيزى نمىتواند در برابر حملة جنين نيرويى مقاومت كند. اما ارشميدس با ماشينهاى خود دست به كار شد، و خرتابه ها و قطعات عظيم سنگكها را با جنان سرعت و صداى مهيبى به سوى نيرو هاى زمينى مهاجمان برتاب كرد كه هيِج كس ياراى تحمل آنها را نداشت. برتابهها و سنگها به طرز عجيبى فرو مىافتادند و سر راه خود هرچه بود سرنگون مىكردند و صفوف دشـمن را مـتلاشى و براكنده مىساختند. در اين خمن، تيرهاى عظيمى نيز ناگهان از ديوارها بر كشتيها برتاب مى شد، و بعضى از آنها را با وزن سنگينشان در آب سرنگون مىكرد و نوك بعضى ديگر را با جنگكها يا فلابهايى نظير قلابهاى جرثقيل مىگرفتند و در هوا بلند مىكردند و ستس در آب مىانداختند، يا بهوسيلهُ ماشينهايى در شهر مىگرداندند و ستس بر تندانهايى كه تا زير باروها پيش رفته بود مىكوبيدند و، در نتيجه، جنگجويانى كه در اين كشتيها بودند غرق مىشدند. اغلب اوقات، نيز يك كشتى از آب بيرون كشيده مى و و در هوا چندان به اين سو و آن سو مى جرخيد تا سرنشينان آن به اطراض برت مى شدند و كشتى خالى بر بارو ها فرو مىافتاد. ماشينى كه ماركلوس با خود آورده بود و بر عرشء كشتى جاى داشت وهبه علت شباهت به يكى از آلات موسيقى آن زمان، "سامبوكا" ناميده مىشد، هنوز به باروهاى شهر نرسيده سنگهـاى بسيـار سـنگينى، يكـى بس از ديگـرى، بـر آن فـرو مىريخت. بعضى از اين سنگها جنان بشدت به آن مىخورد كه آنرا از جايش مىكند؛ به طورى كه ماركلوس، حيرت زده به كشتيها و نيروى زمينى خود دستور داد كه هرجه زودتر عقب نشينى كنند.
سجس، در يكت شوراى جنگى تصميم گرفته شد كه اگر بتواند شب هنگام خود را به ָاى باروها برسانند. زيرا ريسهانهايى كه ارشميدس در يرتابه افكنهاى خودش به كار برده بود، جون سرعت زيادى به پرتابهها مىداد،آنها را در فاصله دورى بر سرشان فرو مىريخت و، به همين جهت، فكر مىكردند كه اگر بتوانند خود را به نزديكى بـاروها برسانند، ديگر يرتابهها مؤثر واقع نـىشوند. اما ارشميدس ظاهرآ حساب اين را هم كرده

19 طلوع علم فيزيك
 سازگار بودند و، از سوراخهاى كو چكى كه در باروها بود، اين پرتابه افكنهاى كوتاه برد كه نامشان (اكزدّمر) بود مى توانستند، بدون آنكه در ديدرس دشمن بـاشند، هـر جسـم نزديكى را مورد اصابت قرار دهند.

بنابراين وقتى كه روميان به باى باروها رسيدند و به خيال خو دشان كسى آنان را نديده بود، يكك بار ديگر با طوفانى از برتابهها روبهرو شدند؛ سنگها تقريباً عمودوار بر سرشان فرو مىريخت و از هر جاى باروها تيرهايى بر آنان برتاب مىشد. در اينجا هم، مانند وقتى كه تا اندازهاى دور بـودند، پرتـابهها بـر آنهـا پرتـاب مـىشل، بسيـارى از
 صدمهاى بزنند. زيرا ارشميدس قسمت عمدة ماشين آلات جنگى خود را در باى باروها ساخته بود و روميان، كه ظاهرآ بر عليه خدايان مى جنگيدند، بهنظر مىرسيد كه صدمه و آسيب بيشمارى از جايى نامرئى بر آنان وارد مىشد. با همءٔ اينها، ماركلوس موفق به فرار شد، و در خمن شوخى با مهندسان و هنروران

خودش، جنين گفت:
مبارزه بر عله اين خداى هندسه (مقصود ارشميدس است) را متوقف كنيم كه كشتيهاى ما را همجون ليوانهايى براي برداشتن آب از دريا به كار مى برد و سامبوكاى ما را از كــار انداخته است، و با يرتابههاى فراوانى كه يكباره بر سرما فرو مىريزد دست هيولاهاى صد

دست اساطيرى را هم از بشت بسته است.
درحقيقت، همهٔ مردم سيراكوز در اجـرایى طـرحهـا و نقشههـاى ارشـميدس مـتفقاً شركت داشتن. به همين جهت، هر سلاح ديگرى كنار گذاشته شده بود و فقط سالاحهاى ارشميدس، چه براى حمله و چه براى دفاع، به كار مىرفت. عاقبت روميان جندان بيمناكك شدند كه هر وقت تكه ريسمان يا چوبى را مىديدند كه بر فراز باروهاى شهر بالا مىرفت فرياد مىتشيدند "باز ارشميدس به آزمايش كردن ماشين تازهاى مشغول است "، و ها به فرار مىگذاشتند. ماركلوس كه اوضـاع را جـنين ديـد، دست از حـمله كشـيد و، از آن هس، محاصرهاى طولانى را آغاز كرد.
 رومى درآمد. گروهى از سربازان رومى به خانئ ارشميدس ريختند

 بدن فيلسوف كهنسال فرو برد.
سيسرون 「 ${ }^{\text {T }}$
 شده بود. آن وقت وى جنين نوشت: "آيا اين شهر يونان معروف، كه سابقاً مهد دانش بود، تا اين اندازه نسبت به قبر بزرگترين نابغه خود بيگانه است كه يك نفر نفر اجنبى آنرا يـيدا

مكتب اسكندرانى

با انحطاط قدرت سياسى و اقتصادى آتن، مركز فرهنگ يون يونا بـى به اسكندريه انتقال

 اطلاعات علمى خود را، به عنوان دانشجوى جوان سيراكوزى، فرإگرفت.

YI O طلوع علم فيزيك

 حركت را تقريباً هزار سال بعد سر آيزكك نيوتن بيداكردرد.

آينها و موارد استعمال عملى آنها بحث شده استى استى از مطالب اين كتاب يكى اين است:

 مىدهد، و حال آنكه آينهاى معولى، نوعآ، خاصيت عكس اين را دارند و ستهاى

مخالف را نشان مىدهند.

الف
ب
شكل 1-1

اين كار با قرار دادن دو آينه بدون قاب، لب به لب، و با زاويهُ قائمه نسبت به يكديگر

$$
\text { صورت مىگيرد (شكل } 9 \text { - 1) }
$$

به كمك آينهها ممكن است پشت سر خو دمان را بينيم [سلمانيها پشت گردن شما را در هنگام اصلاح سر از اين راه به شما نشان مىدهند]، يا خود را جنان وارونه بيينيم كه گويى بر سر خود ايستادهايم، يا با سه چشم و دو بينى با قيافهاى حنان كج و معوج مشاهده كنيم كه گويى در غصه و اندوه شديد هستم [مشل تالار آينهاى در يكك پارك تفريحى].
 لزوم، از درون اتاق بسته خانئ خودمان بيينيم كه جند نفر در خيابان هستند و چه مىكنند.

طr O
نظريات هرون در باره́ جنس نور از آنجه در زير نقل شده آشكار است: عملا آنجه در بارة انعكاس و انكسار نور نوشته شده است، كه جرا اشعغ جشمهاى ما بر آينها منعكس مىشود و چرا اشععُ منعكس زواياى مساوى دارد، مورد ترديد است. اكنون دليل اينكه حرا ديد ما با خطوطى مستقيم از عضو باصره راه مى افتد، ممكن است چنين بيان شود: جون آنجه با سرعت تغييرنابذير حركت مىكند، به خط مستقيم سير مىكند. تيرهايى را كه از كمان رها مىشوند مىتوان همجون مثالى بهشمار آورد. زيرا به علت
 فرصت اين را ندارد كه كندتر حركت كند، يعنى مسافت درازترى رابييمايد. جون نيروى
 به حركت در كوتاهترين مسير مى شوند. اما كوتاهترين خطوطى كه همه يكت انتها داشته باشند، خطط مستقيم است. اينكه شعاعهايى كه از جشم ما راه مىافتند سـرعت بينهـايت دارند، از ملاحظات زير نتيجه مى شود. وقتى كه ما بس از آنكه جشمهاى خود را بستيم دوباره آنها را باز كنيم و به آسمان بنگريم، هيجّ مدت زمانى براى رسـيدن شعـاعهاى بصرى ما به آسمان لازم نيست. بديهى است كه ستارگان رارا، با آنكه در مسافتى بينهايت
 كه آشكارا شعاعها با سرعت بينهايت منتشر مىشوند. در نتيجه، شعاعها هـيجِ تأمـلى و شكستگى و انحنايى را جايز نـى شمرند، بلكه در كوتاهترين مسير كه يك خـن خط مستقيم است حركت خواهند كرد. قسمت نقل شده اين واقعيت جالب را آشكار مىســازد كـهـ هـرون و ظـاهراً هــمهٔ معاصران وى عقيده داشتند كه رؤيت بر اثر اشعهاى است كه از جشم خارج و بـر شـيئى منعكس مىشود. در نتيجه، بر همان اصل رادارهاى امروزى متكى بودند. يك اسكندرانى معروف ديگر، كلاوديوس بطلميوس منجم است (نبايد با اعضاى سلسله بطالسه كه سالها بيس از ميلاد مسيع بر مصر حكومت مىكردند اشتباه شود) كه در نيمةٔ اول قرن دوم ميلادى مىزيسته است. رصدهاى بطلميوس از ستارگانوسيارات، كه در

> شكل - -

با نگاه كردن در آينه مركبى تشكيل بانته از دو آينة Mr , M1 بارئ قائمه، تصوير مضاعفى از خودمان مىبينيم. نخست در
 عــلت ايــن دو انعكـــاس، طـــرن راست مـــــان طـــرن ر طـــرن چث ممــــان طـــرن جبٍ باقى مىماند.
اشعءٔ نور واتعى با خطرط شر نشان داده شده است.

 علاوه بر جيزهاى ديگر، از موضوع انكسار نور در هنگام عبور از محيطى به محيط ديگر بحث مىكند. وى جنين: مىنويسد:
ra Oلوع علم فيزيكن

مى شونه، زيرا ششاع بصرى در آنبا وارد مىشود.

بطلميوس پديدهُ انكسار را بهوسيلةُ آزمايش سادهُ زير، با سكهالى كه در ته ظرفى پِر از آب گذارد، مصور ساخت (شكل • ا - الف).
 درست بر لبه ظرف مى خو رد، به نقطهاى برسد كه بالاتر از سكه است است. آن و وت با با ثابت نگادداشتن وضع سكه به آرامى آب در ظرف بريزيد تا وري ظرف مى خو رد رو به إيين خم شود و به سكه برخو رد كـند. نتيجه اين است: جسمى كهى قبلا ديده نمىئد، اكنون بر امتداد آن خط مستقيمى ديده ميشو د كه از جشم به نقطهاى بالاى موضع جسم میرسل. ناظر تصور نخواهل كرد كه شُعاع بصرى به سوى جسم خم شده است، بلكه فكر مى كند كه جـم به سو سي شعاع با بالا آمده است. بطلميوس، در همين كتاب آزمايشى را شرح مىددهد كه براى مطالعّأ مشروح قوانين انكسار نور به كار رفته است.

شكل 1-1 ال

○ My سرگذشت فيزيك
مقدار انكسازى كه در آب صورت مىگيرد و مدكن است مشاهده شود، با آزمايشى نظير آنجه با كمكت يكت قرص مسين در مطالعئ قوانين آينهها انجـام داديـم مشـخص مى شود. دايره afy را طورى بر روى اين قرص رسم كنيد (شكل • 1-1 ب) كه مركز آن sو دو قطر as و و
 ظرف كو چكى قرار دهيد و اندكى آب صاف در ظرف بريزيد، بهطورى كه مانع رؤيت نشود. سطح قرص را چֶان عمود در آب نگاه داريد كه سطح آب درست از ميـان آن بگذرد، يعنى α كاملا زير آب و قطر $\alpha s \gamma$ عمود بر سطح آب باشد. اكنون قوسى باطول معين، يعنى عهع، از نقطهُ α در يكى از دو ربع قرص كه بالاى سطح آب است اختيار كنيد. يكك نشانهُ رنگين كو جكك ع روى آن بگذاريد. با يك چشم
 درضمن يكت ميله باريك و كو جكت را روى قوس طو رى سركت دهيد تا انتهاى ميله در آن نتطهاى از قو د ديده شو د كه امتداد خطى است

 خواهد بود از قوس
هرگاه چشم رادر امتداد عمود as بگذاريم، شعاع بصرى خم نخواهد شد. اما بر نقطة \%، مقابل α ، و در همان امتداد مستقيم هo خو اهد تابيد. ولى در تمام موضعهاى ديگر، رفته رفته كه قوس عه افزايش مىيابد، قوس m نيز افزايش پـيدا مـىكند، امـا مـقدار خميدگى شعاع تدريجاً بزرگتر خواهد شد.

طY O طلوع علم فيزيك
خميدگى

اين روشى است كه بو سيلةُ آن مقدار انكسار را در مورد آب كشف كرديم.
بطلميوس با روش مشابهى، انكسار اشعهُ نورانى را در مرز ميـان آب و شـيشيشه نـيز
مطالعه كرد، و دريافت كه در اين مورد خميدگى اشعه بزرگتَت است. اماكوششى

 ساخت كه قسمتى از آن در زير نقل شده است:

I/.reary $119 \frac{1}{r}^{\circ}$ /.rairy 110° /.r.r.rer $119 \frac{1}{r}^{\circ}$

اين جدول مربوط است به آنجه كه اكنون به نام جدولهاى سينوس مثلثاتى معروف است، با اين تفاوت كه نيمقوسها (زاوئ AOC) و نيموترهاى AD را AD را به كار بردهاند. طول AD براى شعاع واحد، همان سينوس AOC است. و حال آنكه طـول AD است تابعهاى مثلثاتى در حل مسائل هندسى گونـاگـونى كـه مشـتمل برطولهـا و زواياست بسيار سودمندند.

 بعد هم كه ويلبرورد سنل "19، منجم و رياضيدان هلندى، آنرا بود. حذانكه بعداً خواهيم ديد، قانون سنل در شناسايى جنس و طبيعت نور حائز اهـميت فراوانى است.

 مىزيست كه بهرغم قدرت كليساى كاتوليك از فرهنگك و خدايان يونانى حمايت مىكرد.

ط9 O ط

$$
\text { شكل } 11 \text { - }
$$

دوره́ تاريكى و رنسانس

با زوال فر هنگك يونانى تكامل علم، بهطور كلى، و علم فيز يكن، بخصوصر، به يكت حالت

 زيرا بهتر از هر چيز ديگر با مفهوم موقعيت مركزى واتيكان، به عنوان مقر بيامبر برگز يدئ

خدا بر روى زمين، مناسب و سازگار بود. بحثهاى علمى بيشتر محدود بود به مسائلى از اين

 مراقب بود كه هر گونه انحرافى از خط مشى كلى عقايد مذهر اروبى را سركوب كند.

 متداول است آشكار مىشود، الجبر، الكل، الكالى (قليايى)، آلماناكك (تقويم)، و از اين اين
 ابداع كر رند، و عددنويسى را به سبكى عرضه داشتند كه شمارش را را خيلى آسانتر از سبك

 غيبگويى و يشثگويى زندگى آدمى از روى هيئت ستارگانى كه آدمى در آر آن هيئت زاده

 صليبى در بيتالمقدس، بسرعت رو به زوال رفت.

دورة تاريكى و رنسانس ○ \bigcirc
در طى همان دوران، كشور هاى اروبايى بتدريج از دوران هرج و مـرج و تــــريكى

 مدارسى وابسته به خود داشته باشند، و در سال • . 1 ا ميلادى دانشگاه پاريس بنياد يافت. دانشگاههاى بولونى، آكسفرد، و كيمبريج مدت كوتاهى پس از آن بنياد يافتند و بسرعت
 (تريويوم) ${ }^{\text { }}$ (

 رسيده بود. جنانكه قبلاً هم گفتيم، اين واقعيت كه ارسطو، بري با آنكه در بسيارى از از موضوعها

 برمى خاست.
يكى از مهمترين عوامل در اشاعهٔ دانش، اختراع چجـاب در اواسـط قـرن چــانزدهم

 كه كويرنيك (نيكولاوس كويرنيكوس) آنرا نـوشت و در آن مـنظومهو جهـانى نـوينى
 بود كه اين كتاب با مقدمهاى (بدون اطلاع مؤلف و توسط ناشر كتابر) انتشار يابد. در اين
 جنبةٔ تمرين رياضى در آن خيلى بيش از بيان واقعيتهاست.

4) De Revolutionibus Orbitum Coelestium

سخنرانى و قوانين گیلر

درهم آميختگى علوم الاهى با علم واقعى در اين دوره؛ شايد با اين قسمت از كتاب

 كحلر در تحقيقاتش اهدا شده است، با اين كلمات آغاز مىشود:

ادعية خالصانه و احترامات عاجزانئ خويش رابه حضور محترم خداوندكاراران عادل
 مملكت سيتريا، اعضاى محترم شو واى بنج نغره كه به بنده لطف و و عنايت دارند، تتديم
مىدارم.

آنجهَ راكه هفت ماه يِش وعده داده بودم، يعنى اثرى كه بنابر قضاو ت اشخاص

 كرده است! اگر خوراهان اين هستيد كه موضوعى تازه و و نو باشد - نخستينبار است كه

 نخواهد بود. مراد من كاب طبيعت است كه تا اين حد در كاب باب مقدس مور رد تجليل است. ويولس مقدس به كنار اندرز مىداد كه خدا را در خود بنغريل، همان گوزنه كه خو رشيد را

PD دورؤ تاريكى و زنسانس

در آب يا در آينه مى بينيد. اين شناسايى خدا از راه انعكاس تجليات او چيزى است كه بايد مائة شادى هر مسيحى باشد، و چرا نبايد هر مسيحى از اينكه ما خلداونـــ زاز زاد صحیح تقديس و تكريم كنيم شاد شو د. هر جه آگگاهى ما بر خلقت و عظمت آن بيشتر باشد، ديندارى ماعميقتر است. همهُ سرو دهايىى كه داود، بِيغمبر و خلدمتگار مؤمن خالأت جهان، براى آفريدگار سروده است، در حمد و ثناى خداى يگانه است. در اين ستايش، فكر او از جلال و عظمت آسمانها سرجشمه مىگرفته است. به گفتهٔ او، آسمان جـلال خداوند را بيان مىكند و فلكك از عمل دستهايش خبر مى دهد. (اخدايا به آسدانى مىنگرم كه ساختهُ دست تواناى تو ست، و به ماه و ستارگانى كه آفريدهُ توست. خلا پروزڭگًاز ماست و قدرت او بى پايان است؛ شماره ستارگان را مـىدانــل و هـريكت زا بـا نـامش میشناسد") داود در جاى ديگر كه از روحالقدس الهام گرفته و سرشار از شادى است• به جهان چنين خطاب مىكند: تو را خاى رب مىستايم، او را حمد مىیو يم، خو زشيد و ماد و غيره را.
در جاى ديگُرى از اين مقدمه مى خوانيم:

اين واقعيت كه تمامى جهان در كرهاى محاط است، سابقا بهطو ر كامل, توسط ارسطو (در كتابى كه درباره́ آسمانها نو شته است) بحث شده كه دلايل خو د را بخصوص متكى بر مفهوم خاص سطح كروى كرده است. بيشتر بههمين دليل است كه هنوز هم كرؤ خازجى ستارگان ثابت، با آنكه هيج حركتى ندىتو اند به آنها وابسته باشد، شكال كردى زا نگام
 واقعيت كه بقئ مدارها گردند، مىتو اند از شكل حركات دورانى ستازگان ذيده شـو د. بنابراين، بهدليل ديگرى بيش از اين احتياج نداريم كه براى آرايش جهان منحنى به كار مى رفته است. با همهٔ اينها، در حالى كه ما در جهان سه نوع كميت داريمه، يعنى شكلى و شماره و محتوى اجسام، انحنا تنها در شكل يافت ميشود. دز انحنا و شكل، محتوى حائز اهميت نيست، زيرا ساختمانى كه در يكت ساخختمان مشابه مدحاط شو د (مشلا كرد ذ ; كرد يا دايره در دايره)، يا در هر جا با آن تماس دارد يا اصلا با آن تماس ندارد. شكل. كرو ث. جو ن كميت كاملا واحد را مشخص مى سازد، مىتو اند تابع عدد سه باشـد.

كحلر، درحالى كه اين قسمتهاى پرثمر را مىنوشت، دربارهٔ مسئلُٔ سادهتر ديگرى نيز

 دانشمندان يونانى بهدست آورده بود، بر اين همت گمارد كه شا شكا

 كرد: دو سر نخ يا ريسمانى رابه دو ميخ كه بر يكت صفحهُ مقوا نصب شده متص انصل مىيكنيم
ry
و ريسمان را بهوسيلةُ نوكك مدادى بر روى مقوا جنان حركت مىدهيم كه يوسته كثـيـيه

 بهدست نمىدهد. Uسمى
 شُـجّى

r-1 شكل

 بهدست داده بود، كلل به اين نتيجه رسيد كه اگر فرض شود هو همأ سيارات مدارهايع بيضوى

 سرعت يك سياره با فواصل آن از خورشيد در قسمتهاى مختلف مــدار هـنـان است كـه

خط فرضى واصل بين خورشيد و سياره سطوح متساوى از ملار سيار0اى را در مدتهاى متساوى
مىروبد.

كیلر اعلام شد، و به قانون اول و دوم كخلر معروف است.
پس از آنكه قوانين حركت انفرادى سيارات را دريافت، كیلر جستوجوى ارتبـاط
ميان سيارات مختلف را آغاز كرد و چس از نه سال آن را نيز دريافت. وى همه امكانات را بررسى و امتحان كرد، از قبيل ارتباط ميان مدارهـاى سيـارهاى و جــنل وجهيهـاى مـنظم هندسى. ولى ظاهراً هيع يكت از اينها درست درنمى آمد. عاقبت، او كشف برجستهاى كرد

سه قانرن كیلر در بار: حركت سيارات

دو دوء تاريكى و رنسانس 〇
كه بهامام قانون سوم كلر معروف است. بيان اين قانون جنين است: نسبت مربعات زمانهاى حركت انتقالى هر دو سياره به يكديگر مساوى است با نسبت مكعبات نواصل از خورشيد. در شكل Y Y Y Y ب مدار سيارات معروف به سيارات مـعروت بـه سيـارات
 نجومى) و دورههاى تناوب سالانة آنها نشان داده شده است.
 مى آيد.
$\cdot / \cdot \Delta \Lambda$

- / $\cdot \Delta \Lambda$
- /r^v
- /rav

از طرف ديگر مكعبات مسافات هم جنين مىدهد:
1/..
r/af.
 حركت مىكتند. اما بيش از نيم قرن طول كـي كشيد تا توانستند اين باسخ را يابِند كه هرا هنين حركت مىكنند.

زنجير ستوينوس
درحالى كه كیلر بيشتر متوجه كرات Tسمانى بود، معاصر وى، يكك مهندس هلندى

 شده است و مىرساند كه ييشرفت فراوانى در دركك مسائل مربوط به استاتيك بـهدست

مرگخذ فيزيك
آمــده بـوده است. زنـجيرى كـه از گكلولههـايى فـلزى (امـروزه آنهـا راكـاسه سـاجمه "بول برينگک " مىناميم) تشكيل شده است، بر پايهاى به شكل منشور قرار دارد كه سطوح آن بسيار صاف و صيقلى ("بدون اصطكاك ") است. حال بينيم جهه روى خواهد داد؟ از
 (كوتاهتر) است، حنين تصور مىرود كه، به علت اختلاف وزن، حركت زنجير از راست به چج آغاز خواهد شد. اما، جون زنجير ييوسته است، اين حركت هرگز باز نمىايستد و زنجير بيوسته در حركت خواهد بود. اگر چنين چيزى درست بود، مى توانستيم به اين افزار
 حركت نگاه داريم. بهاين ترتيب، بدون هيج زحمت و هزينهاى، كارى انجام خواهد شد، و انسان به ميزانى خيلى بيش از آنحه برنامةٔ "اتم در خدمت بشر " وعده مىدههد، استفاده

C

r-r
زنجير بىاتهاى ستوينوس كه فانون نیادل را بر يكن سطع شيبدار ثابت مىكند.

اما ستوينوس، كه مردى بود هشيار و عملى، اين امكان را بهدور افكند و اين فرض مسلم را یذيرفت كه زنجير به حال تعادل باقى خواهد ماند. اما مفهوم اين فرض آ آن اس است كه كشش گكلولهاى كه بر روى سطع شيبدار قرار دارد، با زاوية آن نسبت به سطع افــى
| \mid دورة تاريكى و رنسانس

$$
\begin{aligned}
& \mathrm{F}_{1} \times \overline{\mathrm{AC}}=\mathrm{F}_{\mathrm{r}} \times \overline{\mathrm{CB}} \\
& \mathrm{~F}_{1} / \mathrm{F}_{\mathrm{r}}=\overline{\mathrm{CB}} / \overline{\mathrm{AC}}
\end{aligned}
$$

با استفاده از سينوس زواياى
خواهيم داشت:

$$
\begin{aligned}
& \sin \varphi_{\mathrm{I}}=\overline{\mathrm{CD}} / \overline{\mathrm{A}}, \sin \varphi_{\mathrm{r}}=\overline{\mathrm{CD}} / \overline{\mathrm{CB}} \\
& \text { به طورى كه رابطه بالا مى تواند جنين نوشته شود: } \\
& F_{1} / F_{r}=\sin \varphi_{1 \varphi} / \sin \varphi_{r}
\end{aligned}
$$

رابطءُ بالا را مىتوان هنين بيان كرد كـه نيروى ثقلى كه بر جسمى واقع بر يك سـطـح شيبدار، در امتداد اين سطح وارد مى شود متناسب است با سينوس زاوئ شيب سطح.

آونتى
درحالى كه ستوينوس بيشرفتهاى شايانى در مطالعات استاتيكى خود بهدست آورد، انتخار نخختين يشروى در علم ديناميك، يعنى مطالعَٔ حركت اجسام مادى، نصيب فرزند يك نجيبزادة تهيدست فلورانسى (ايتاليايى) به نام وينجنتسو گاليلئى شد. با آنكه آقاى وينجتنسو خـودش بـه ريـاضيات عـلاقه داشت، بـراى بسـر جـوان خـود گَاليلئو حـرفئ

 تشريح بدن مردگان را شغل جندان جالبى نيافت، و نكر بيقرارش در جستورجوى مـريائلى از نوع ديگر بود.

يك بار، هنگام شركت در مراسمى مذهبى در كليساى بيزا، به شمعدان آويختهاى

 گَاليله از خود پرسيد كه (آيا مدت هر نوسان، ضمن كندشدن حركت، كوتاهتر مىشود؟)

 بدر خود را قانع ساخت، نقشههاى تحصيلى خود را تغيير داد و مطالعؤ رياضيات و علوم را
آغاز كرد.

حند سالى توجه گاليله به موضوعى كه امروزه ديناميك ـ يعنى مطالعهٔ قوانين حركتى تحت تأثير نيرو ـ ناميده مىشود، متمركز شد. جرا دوره تناوب آونگك با "دامنه" " حركت
 انتهاى يكك ريسمان آويخته مىشدند، هر دو داراى يكت دوره تناوب بودند؟ گاليله هرگز

دورة تاريكى و رنسانس O
مسئلة اول را حل نكرد، زيرا حل آن به محاسباتى نياز داشت كـه تـقريباً يكك قـرن بـعد

 دو در يك مدت زمانى به پايسترين موضع سقوط خود برسند (يكك خهارم دوره́ تناوب

 رسيدند. تحقيقات تاريخى ظاهراً مى رساند كه هنين آزمايشى هرگز

 خانهاش، به نوسان درآورده است.

قوانين سقوط
هنگامى كه سنگى را رها مىكنند روبه پايِن حركت مىكند و، در ضمن حـركّ

 كلوله تندتر مىغلتد. و در حالت حد كه سطح قائم است، گلوله آزادادنه در امتداد سطع فرو مىانتد. مشكل اصلى در انجام دادن آزمايش اندازه گیرىى، مدت زمانى

r-f

4a
هرگاه شيب سطع زيادتر بود، مسافات مربوطه نيز زيادتر مىشد، اما نسبتهاى آنها هميشه
 سقوط آزاد نيز صدق كند. اين نتيجه مىتواند به اشكال مختلف رياضى چجنين بيان شود كه مسافت كل بيموده شده در يكت مدت معين متناسب با مجذور زمان يا، به بيان مرسوم در زمان گاليله، (تتاسبمضاعف) است نسبت به زمان. در عوض، اگر واحد طـول مسـافت بيموده شده بهوسيلة كلوله در اولين مدت زمان اختيار شود، مسافت كل بيموده شده در〒七ايان تمام مدت زمانها، بنابر قانون مجذور، حنين خواهد بود:

$$
\left.\right|^{r}, r^{r}, r^{r}, F^{r}, \ldots
$$

يا ... متوالى ^ جنين خواهد بود:

$$
1 ; F-1=r ; q-F=\Delta ; 19-9=V ; \ldots
$$

از ارتباطى كه ميان مسافت يِموده شده و زمان مشاهده شد، گَاليله نــيـجه گـرفت: سرعت آن حركت بايد به نسبت سادهُ زمان افزاش يابد. اكنون دليل اين بيـان را مطـابق گفتار خود گاليله نقل مىكنيم:

در حركت تندشونده، جون افزايش [سرعت] تيوسته است، نـــىتوانيد درجههـاى سرعت [(رمقادير سرعت) در بيان امروزى]را، كه بهطور بيوسته در هر مقدار معينى افزايش مى يابد، تعيين كنيد، زيرا سرعتها در هر لحظه تغيير مىكند و هميشه نامشخصند. از اينرو نظر خود را از راه ترسيم مثلث ABC بهتر مىتوانيم تمئيل كنيم (شكل هـ - - ب).
 زمان هِنبن است:

$$
n^{r}-(n-1)^{r}=n^{r}-n^{r}+r n-1=r n-1
$$

r-

دليل گاليله دربارة اينكه در حركت تندشونده (يكنواخت) كه از حـالت سكـون آغـاز مـىشود: مـــانت بيموده شده بهوسيلأ يك جسـم متحركك نصف مسانتى است كه جسم مى بيمود اگر با ممان سرعت بيوسته حركت مىكرد.

بر ضلع AC طولهاى متساوى AD, DE, EF, FG, GC را به دلخو اه اختيار مىكنيم، و از نقاط D, E, F, G خطوط مستقيمى موازى با قاعله: BC رسم مىكنيم. اكنون فرض مى مكنيم كد قسمتهايى كد بر روى خطط AC مشخص شده است، مدت زمانهاى متساوى باشند و نيز فرض مىكنيم كه خطوط موازى رسم شده از نقاط D, E, F, G درجه هاى سرعت باشد كه در مدت زمانهاى متساوى به يكك اندازه شتاب و افزايش مىيابند، و نقطة A سرعت DH را بهدست آورده است؛ و در مدت زمان دوم فرض خواهيم كرد كه سرعت و FK افزايش يافته است، و نيز در زمانهاى متوالى به نسبت افزايش خطوط E J به DH از و غيره. اما چحون از هر لحظه به لحظة بعد پيوسته شتاب پديل مى آيد، نقطةٌ GL لحظة مربو ط به كمترين سرعت، يعنى در حالت سكون گذاشته شده است، در عين آنكه هر قسمت معين از زمان با قسمت ديگر ارتباط دارد و AD براى نخستين لحظة زمانهاى بعدى است، آشكار است كه جسم بیش از آنكه درجةٔ سرعت DH مربوط بـه زمـان AD را بهدست بياورد، بايد از بينهايت مقدار درجة سرعت كمترى بگذرد كه دربينهايت لحظات مو جو د در زمان A در تعداد بينهايت نقاط مو جود در خط DA حاصل مى شود. از اينرو

PY O دورة تاريكى و رنسانس
براى نشان دادن بينهايت درجههاى سرعت قبل از درجئ سرعت DH. لازم است خطوطى
 خط DA به موازات DH رسم شوند. اين تعداد بينهايت، خطوط سطح مثلث AHD را به ما نشان مىدهل. در نتيجه مמكن است هر مسافتى را تصور كرد كه جسم، با با حركتى كه از حال سكون آغاز مى شود، از آن مى گذذر و ب بطور يكنواخت شتاب مىيابد و، در ضسن اين حركت، تعلاد بينهايت سرعتهايى راصرف میى كندكه بنابر فرض از نقط؛ A به موازات

KG وسم KF ،JE ،HD حال جهارضلعى AMBC را كامل كنيم، و نه فقط خطوط متوازی رسمـ شـــده در مثلث، بلكه بينهايت خطوط ديگرى راكه مى متوان تصور كرد كه از تمام نقاط AC AC رسم

 درجههاى مشابهى از سرعت بود كه هريك برابر بود با بزركترين آنها BC. اين مجموعئ

 تطبيق مىكند، در جنين مدت زمانى جِنين مسانئى لا بِيو ده، بـيـار معقول و محتمل است كه با استفاده از سرعتهاى يكنواختى كه منطقن است با مـتو ازى الاضـلاع، بـا حـركتى يكنواخت در همان مدت از دو برابر مسافتى خواهد گذشت كه در حركت تند شـونده

كزشته است.

 ديسكورسو، نخستين گام نيز بهشمار مىرود كه در بيدايش (احساب انتگرال)، از راه جمع

○ بر بركنشت فزيك
كردن تعلاد بينهايت زياد از مقادير بينهايت كو جكك بهدست آمــده است. بـا استفـاده از
 جنين نوشته شود:

$$
\begin{aligned}
& \text { زمان × شتاب = سرعت } \\
& \text { 「 }
\end{aligned}
$$

در سقوط آزاد شتاب، كه معمولا با حرن g نمايش داده مـى وشود، بـرابـر است بـا

- ا ثانيه اين سرعت رابه دست خواهد آورد:

$$
\begin{aligned}
& \frac{1}{Y} \times 9 \wedge 1 \times 1 \cdot r=\& q \cdot \Delta \cdot \mathrm{~cm}=\cdot / \& q \mathrm{Km} \text { و به اندازه مسافت }
\end{aligned}
$$

ممكن است با مثال ساده زير نشان داده شود:

 است كه

 بگيريم: () حركت افقى با سرعتى ثابت كه در هنگام رها شا شدن بر بر آن آن وارد شــده است است؛ Y (Y) حركت قائم سقوط آزاد با سرعتى كه متناسب با زمان انزايش مىيابد.

دورة' 'تاريكى و رنسانس

نتيجهٔ جمع كردن اين دو حركت در شكل Y - 7 نشان داده شده است. بر مسحور افقى، قطعاتى متساوى جدا شده است مربوط به مسافتهاى يسموده شده بهو سيلة سنگك در ثانئ اول، ثانيهٔ دومَ و غيره. بر محور قائم6 مسافتها متناسب با مجذور اعداد صحيح، بنابر قانون سقوط آزاد، جلا شله است. مواضع واقعى سنگک با دواير كو جكى نشان داده شده

كه بر روى يكك منحنى شلجمى است.
هرگاه سنگّ را با سرعتى دوبار بزرگتر هرتاب كنيم، در حـركت افـقى خـود مسـافتى را خواهد بيمود كه دوبار بزرگتر است؛ و حال Tنكه حركت قائم T ن به همان صورت اول باقى مىماند. نتيجهاى كه بهدست مى آيد اين است كه سنگك در فاصلهاى كه دوبار دورتر از فاصلهٔ سابت است، خواهد افتاد، اما مدت حركتش در هوا همان خواهد بود. (درتمام اين ملاحظات از مقاومت هوا صرف نظر كردهايـم كه تا اندازهاى مسير سنگك برتاب شده را تغيير شكل خواهد داد:)

زركبب يكت حركت يكنواخت در امتدادى انقى و حركت تندشونده در امتداد قائم. منحنى حاصل بكت شلجمى است.

$$
\text { - ○ } \bigcirc \text { سركذشت فيزيك }
$$

يك مورد استعمال جـالب هـمين اصـل، مسـئلةٔ دو كـودكك است كـه در جـنغلى

 تيرانداز تفنگك خود را مستقيماً روبه كودكى كه بر درخت است است قراول روود و، در لحظهاى كه ماشهٔ تفنگك را مىكشد، كودكى كه بر درخت است خور دو رو را به زمين افكند. آيـا ايـن

 افتادن مىكند و، به اين ترتيب، دو حركت خواهيم داشت: يكك حـركت يكـنواخت بـر

 لحظة يرتاب كلوله، خود رابه زمبن فرو افكند.

دورة تاريكى و رنسانس
امتداد خط ABC ، و يكك حركت تندشونده بر امتداد قائم. از آنجا كه همهٔ اجسام مادى با يكت شتاب فرو مىافتند، حركت قائم گلوله و حركت كودك يكسـان است. در نـتيجه6
 پايسن افتاده كه مساوى است با مسافت CC بيموده شده تو سط كودكك در ضمن فروافتادن. وقتى كه گلوله، بلون تأثير نيروى جاذبه، به نقطهُ C رسيد به اندازه́ مسافت "CB فروافتاده كه مساوى است با مسافت "CC بيمو ده شده تو سط كو كك در خمن فروافتادن. در نتيجه6 گلوله درست به بينى كو دكك اصابت خواهد كرد. به جاى چرتاب يكك سنگك يا يكك كلوله، مىتوان جسمى را از وسيلهُ نقليهُ متحركى
 پارويى زمان گَاليله) رها كنيم. در لحظةٌ رها كردن، سنگك همان سرعت افـقى كشـتى را خو اهد داشت و، در نتيجه، با همين سرعت افقى، پس از رها شدن، حركت خود را ادامه خواهد داد و بيو سته درست بالاى دكل باقى مىماند. مؤلفةُ قائم حركت سـنگك حـركتى است تندشوندهُ سقوطى آزاد و، در نتيجه، درست بر قاعدهُ دكل به عرشهٔ كشتى اصابت خواهد كرد. البته، همين امر اتفاق مىافتد هرگًاه جسمى را از واگّن قطارى درحال حركت

يا از هوايسمايى متحركك، با هر سرعتى كه حركت كنند، فرو افكنيم.
همةٔ اينها درحال حاضر براى ما بسيار ساده و مسلم است، اما در زمان گـاليله چــنين نبوده است. در آن زمان كه افكار علمى در اين زمينه تحت تأثير تعليمات ارسطويى قرار داشت، بر اين عقيده بودند كه جسم فقط تا زمـانى حـركت مـىكند كـه رانــده شـود و6 به محض آنكه نيروى رانش از ميان برود، از حركت باز خواهد ايستاد. بنـابر ايـن نـظريه سنگى كه از بالاى دكل رها مىشود، در ضمن آنكه كشتى به يِشروى خود ادامه مىدهد6 در امتداد قائم فرود خواهد آمد. از اينرو انتظار مىرفت كه سنگك با كشتى نزديكتر بـه قسمت عقب آن اصابت كند. از مشخصات تعليمات قرون وسطايى اين است كه اين گونه مسائل دائم مورد بحث قرار مىگرفت، در حالى كه هيَع كس توجه به اين نداشت كه بر فراز دكل يكك كشتى متحركك برود و از آنجا سنگى را فرو اندازد!

سرگذشت فيزيك $\bigcirc \Delta r$
اوخاع و احوال آن زمان به وسيلةُ قسمتهاى زير كه از كتاب گفتار درباب دو نظام
 در فلورانس انتشار يافت. گاليله، بهينيروى از سنن و رسوم نويسندگان كهن يونانى، كتاب خود را بهصورت مكالمهاى ميان سه شخصيت از مردم (اعجيب شهر)" ونيز به رشتهٔ تحرير درآورد. اين سه شخصيت عبارت بودند از سالوياتوس، كه بـه جـاى خـود گـاليله است؛ ساكردوس، كه وكيل دعاوى هوشمندى است؛ وسيمیليسيوس كه نمايندء افكار ارسطويى است و جندان هم باهوش نيست. اينك منتخبى از استدلالهاى اين سـه شـخص دربـاره سنگى كه از دكل يكك كشتى متحرك؛ و از برجى بر روى يكك كرهء زمين متحرك (بنابر عقيدهٔ كويرنيك) فرو مىافتد.

سالوياتوس: ارسطو مىگويد كه دليل بسيار قانع كننده دربارة سكون زمين اين است كه پرتابههايى كه راست به بالا پرتاب مىشوند، در امتداد عمود، بر همان خطى كه پيمودهاند به همان جايى كه از آنجا پرتاب شدهاند باز مىگردند. و اين مـوضوع، در ارتفاع بسيار زياد حركت نيز درست است. بـطورىكه در اينجا ممكن است به استدلالى
 استدلال ارسطو و بطلميوس مبنى بر اينكه اجسام سنگينى كه از ارتفاعى فرو مىافـتند مشهو داً بر خطى مستقيم و عمود بر سطح زمين سقوط مىكنند. اكنون كه ممكن است به
 بطلميوس و ارسطو را رد كنيم كه گفتهاند وزنهها در سقوط آزاد از يك ار ارتفاع، در امتداد خطى مستقيم و عمود فرود مى آيند، يعنى مستقيماً بهسوى مركز، او جهه وسايلى براى اثبات اين موضوع به كار مى برد. سمهليسيو: عقل و منطق كه وسايلى است كه ما را مطمنْ مى سازد برج يا ارتفاع
 آنكه سر مويى به يكت سو يا سوى ديگر كج شود، و درست در زير جايى كه از آنجا فرو افتاده است به زمين مىرسد.

Ar \bigcirc دورة تاريكى و رنسانس

سالوياتوس: اما اگر اتفاق افتد كه كره زمين بر گرد خود بحرخدل، در نتيجه، برج نيز همراه آن برود و آن و قت سنگٌ هم بر بدنهُ برج بلغزد، حركت آن جچگونه خواهد بو د؟ سيمپليسيوس: در اين حالت ممكن است تا حدى به جاى حركتش بگوييم حركاتش [حركات سنگ؛]، زيرا سنگك حركتى خو اهد داشت براى فرود آمدن از بالاى برج تا پايين آن، و حركتى هم بايد داشته باشد كه مسير حركت برج را بيروى كند. سالوياتوس: بهطورى كه حركت سنگ بايد از دو حركت تركيب شده باشد، از اين نتيجه مى شو ده ديگر آن خط مستقيم و عمود ساده را نمىييمايد، بلكه خطى مو رب و شايد غير مستقيم خواهل بيمو د. سيمזليسيوس: جيزى دربارة نامستقيمى خط نـى توانم بخو يم اما آنجه خوب مىیانم

اين است: خط لزوماً مورب است.
سالوياتوس: پس مى.بينيد كه، فقط با مشاهده سقوط سنگ در لغزش بر بدنه بـرج، نمىتوانيد به تحقيق ثابت كنبد كه سنگك مسيرى مستقيم و قائم مى זيمايد؛ مگر آنكه قبلا فرض كنيد كه زمين بهحال سكون است. سمثِليسيوس: درست است، زيرا اگگر زمين حركت كند، سنگك مورب و غير عـمود خواهد بود. سالو ياتوس: پس دفاع ارسطو عبارت است از عدم امكان، يا دست كم تشخيص وى در عدم امكان اينكه سنگ بايل حركتى مركب از دو حركت راست و دايرهاى داشته باشد. زيرا اگر او این را غير ممكن نمىپنداشت كه سنگٌ بتواند در آن واحد به سوى مركز و برگرد مركز حركت كند، مىفهميد كه ممكن است سنگگ در حال سقوط، چپه بـرج در حركت باشد چه ساكن، بدنه برج را بیيمايد، در نتيجه او بايستى دركك كند كه از ايـن حركت سنگ هيج چیيزى كه مربوط به حركت يا سكون كره زمين باشد، نمىتو اند بهدست آيد. اما اين بههيج وجه درباره ارسطو بخشودنى نيست، زيرا لازم بود كـه اگـر جـنين منظو رى داشت كه جزنى از استدلال او بهشمار مىرفت، آنرا بيان مىكرد. و نيز به اين علت كه نمىتوان گفت كه حنين اثرى غير ممكن است يا اينكه ارسطو آنرا حنين چنداشته

O \quad سركذشت فيزيك

است. علت اول نمىتواند تأييد شود، زيرا خيلى زود نشان خو اهم داد كه نه فقط ممكن است بلكه لازم هم هست؛ و دومى هم نمىتواند محقق شود، زيرا خود ارسـطو قـبول مى كند كه آتش طبيعتاً به خط مستقيم حركت مىكند و با حركت روزانه جابه جا مى شود و بهو سيلة آسمانها در تمامى عنصر آتش و قسمت عمده́ هواى فوقانى سهيم است. اگر، در نتيجه، اختلاط حركت مستقيم روبه بالا را با حركت دورانى كه از طرف تقعر كره́ ماه به آش و هو ا انتقال مىيابد ممكن مىیِندارد [ارسطو]، بايد اختلاط حركت مستقيم سنگك را به بايين با دورانى كه براى تمامى كره́ زمينى طبيعى است، خيلى كمتر غيرمكن بداند -

كرة زمينى كه سنگث جزنى از آن است. در همين كتاب، در جاى ديگر6 سالوياتوس آزمايش بسيار جالبى را يسشنهاد مىكند تا

نظريه خود را در بحث قبلى ثابت كند:
سالوياتوس: اينكه بيم و نگرانى شما در اين مثال خيلى بيشتر از مثالهاى ديگر است، اگر اشتباه نكنم، مربوط به اين است كه برندگان در حركتند و، در نتيجه، قادرند كه بهميل خود قدرتشان را در مقابل حركت ذاتى اجسام زمينى به كار برند. مثلاً آنها را مى بينيم كه به بالا پرواز مىكنند، يعنى چجيزى كه از هر جهت براى اجسام سنگين غير ممكن است؛ و حال آنكه و قتى كه مردند فقط مىتواند فرو افتند. و در نتيجه شما اين را در نظر مى گيريد كه دلايلى كه براى هرگونه پرتابهاى كه در بالا ذكر شد صادق است؛ در مورد برندگان نمى تواند صدق كند. اين كاملاً درست است و در نتيجه درست بودنش مىبينيم كه رفتار برندگان زنده با رفتار اجسام ساتط شونده متفاوت است. اگر يك برنده مرده و يكك برنده زنده را از بالاى برجى فرو افكنيل، برندهُ مرده چنان خو اهد كرد كه يك سنگ مىكند؛ يعنى نخست از حركت كلى شبانهروزى بيروى مىكند و سچس از حركت سقوطى، درست مانند يك سنگُ. اما اگر پرنده فرو افتاده زنده باشل، جپه جیزی مانع مىشود كه بهمدد بالهايش و بهميل خود پرواز كند؟ و اين حركت، كه مختص به پرنده است و ما در آن دخالتى نداريم، بايد لزوماً براى ما مرئى باشد. خلاصه تأثير پرواز پرندگان با پرتاب پرتابه در هر جاى جهان هيجِ تفاوتى ندارد، جز اينكه پرتـابهها بـهوسيلةُ يكك پرتـاب كـنـنده خارجى بهحركت درمى آيند و برندگان بهوسيله يكت نيروى درونى.

دوره تاريكى و رنسانس

برای آخرين دليل، دربارة بى ارزشى همة آزمايشهايى كه فبلا انجام گرفته است، اكنو ن زمان و مكان رامناسب مى يابم تا راهى را نشان دهم كه جگونه انتخاب صحيحى از ميان همء آنها صورت گيرد. خود و يكى از رفقايتان را در بزرگترين اتاق زيرين عرشهّ يك كشتى بزرگك محصور كنيد و مقدارى پشه و مگس و اين گونه مو جو دات زنده نيز فراهم سازيد و نيز تغارى بر از آب فراهم كنيد و مقدارى ماهى در آن بريزيد. يكك بطرى را هم چنان سرازير كنيد كه قطره قطره آب از آن در بطرى دهان باريكى كه زير آن است بريزد. سپس، در حالى كه كشتى در حال سكون است، مشاهده مىكنيد كه چگونه اين جانو ران بالدار با سرعتهاى مشابه بههر سوى اتاق برواز مىكند؛ جچگونه ماهيها بههر سو شناورند؛ و جچگونه همهُ قطرههاى آب در بطرى زير آنها فرو مىريزد. و اگـر چـيزى بهسوى رفيقتان بيندازيد، احتياجى به اين نداريد كه آنرا در يكك سو با نيرويى بـيشتر بيندازيد تا در سوى ديگر؛ مشروط بر اينكه فاصله ها مساوى باشند و بههر سو كه بپريد به يك اندازه خواهيد بريد. مشاهله مىكنيد كه همهُ اين خصوصيات كه هيج كس در آنها ترديدى ندارد، تا زمانى كه كشتى آرام ايستاده است، بههمين نحو وقوع خواهند يافت. كشتى را با هر سرعتى كه مى خو اهيد بهحركت درآوريد. مادام كه حركت يكنواخت است و بههيجِ سو آشفتگى پيدا نمىكند، نخواهيد توانست كمترين اختلالى در تأثيرات فوق تشخيص دهيد و نيز نخواهيد توانست از روى آنها تشخيص دهيد كـه كشـتى حـركت مىكند يا بيحركت ايستاده است. علت اين ارتباط آثار آن است كه حركت كشتى مشترك است ميان همهُ چيزهايى كه در آن و جود دارد و هوا؛ منظور من حالتى است كه همه اين چيزها درون اتاق محصور شده باشند؛ اما در حالتى كه اين جيزها بالاى عرشه در هوا آزاد باشند و مجبور نباشند كه از مسير كشتى بيروى كنند، اختلافهاى كمابيش قابل تو جهى در بعضى از آثار مذكور مشاهده خو اهد شد. و هيج ترديدى نيست جز ايـنكه دود همـان اندازه از كشتى عقب مى ماند كه خود هوا عقب مىماند. مگسها و نيز پشههـا كـه هـوا مانعشان مى شو د، ديگر نمى توانند حركت كشتى را بيروى كنند. در هر فاصلهاى كه از آن جدا شوندد جون نزديك به آن هستند، بهعلت وجود خود كشتى كه ساختمان بیِج در

نامشهود است.
ساگردوس: گرجه به فكرم نمىرسد كه وتتى در دريا باشم از اين مشــاهدات جهـ

 اكنون باقى مىماند ايرادى كه، بنابر آنجه اين تجربيات به ما نشان مىدهدل، بديد
 ماشين گردان جسبيده است دور افكند و براكنده كند. بر اساس اين وانيا

 نـىتواند جنين دانعهاى را تحمل كند.....
 مكانيكى معلوم كرد كه آياكشتى لنگر انداخته يا آنكه حركت مى مكند بهاصـل "نسـيـيت

 كمكك گاليله به علم مكانيك همين بس است.

دورة تاريكى و رنسانس OY

Fَاليلةٔ منجم
گَالِله گذشته از آنكه يكى از نخشنين فيز حكدانان نظرى و عملى بوده، سهم عظيمى
 كرده است. توجه وى نخستين بُئ، در سال F F F ال، به آسمان معطوف شد؛ در شبى كه

 نــجومى، كــه در بجـمالات زيـر آنرا تـوصيف كـرده است، عـلم نـجوم را دگـرگون

ساخت:
"درحدود ده ماه. يسش زمزمههايى به گوش رسيد و شايعاتى برخاست كه يك نفر

سرگذشت فيزيك $\bigcirc \Delta \Lambda$
وقتى اين اسباب را ساخت آنرا بهسوى آسمان متوجه كرد، و عجايب جهان در برابر جشمانى جلوهگر شد. به ماه نگاه كرد و دريافت كه: سطح ماه، بر خلاف آنحه يِروان مكتب بزرگى از فلاسفه در مورد ورد ماه و و ساير اجرام سماوى تصور مىكنند، سطحى كاملاً صاف و همواره نيست، بلكه ... بالعكس نـاهموار است و ذوعارضه؛ و مانند زمين مشحون از يستى و بلندى. در سويى كوههايى بلند و شامخ سر برافراشته، و در سوى ديگر درههايى عميق و زرُ ورف نمايان است. به سيارات نظر افكند و دريافت كه:
 شده باشد، و همحون ماههاى كوحكى نمايانند كه كاملاً روشن و دانهاى شكل هستند. اما ستارگان ثابت در برابر جشم عريان آين اصطلاح بايد براى نخستين بار به كار رفته بـاشد]

 عريان به آنها نگاه مىكينيم.
 برد: "متوجه شدم كه سه كوكب كوحچك، كه در عين خردى بسيار درخشان نيز بودند، در
 مرا بهحيرت فرو برد. زيرا اين اختران بر خطى مستقيم، موازى با دايرةالبروج، قرار داشتند
 ستارگان، دو تا در طرف مشرق مشترى بود و فقط يكى در طرف مـغرب ... امـا سـ از از

 قرار گرفته است، و جالبتر آنكه فواصل آنها از يكديگر، نسبت به شب قبل، كمتر است و در عين حال با يكديگر مساوى."

دورة تاريكى و رنسانس $09 \bigcirc$
به زهر ه و عطارد نظر افكند و كشف كرد كه آنها گاهى، درست مشل ماه، يكك شكل هلاكلى دارند، و نتيجه گرفت كه:
همانطوركه زهره و عطارد بهدور خورشيد مى چرخند، اين ستارگان نيز گرد مشترى مىگردند. مشاهدات و رصدهاى بعلى، اين امر را چون روز روشن ساخت و، بالاخره 6 از همين طريق مشاهدات و رصلها مسلم شد كه تعداد اجـرام سمـاوى كـه بـهدور مشـترى گردش مىكنند سه نبو ده بلكه جهار است)...
بهراه شيرى ياكهكشان زمين نگاه كرد و دريافت كه:
جيز ديگگرى جز جرمى از ستارگان بيشمار فشرده در هم نيست. كشفيات گاليله، كه با استفاده از تلسكوب صورت گرفت، دليل انكارنايذيرى دربارهٔ درستى منظو مهٔ جهانى كوپرنيكك بهدست مىدهد، و گاليله هميشه با خشنودى از آن سخن
 گاليله توقيف شد و مدت درازى را در زندان انفرادى گـنـرانــ. امـا ظـاهراً بـازيرسى و فشارهاى وارد شده بر او افكار مبارزهجوى وى را تغيير ندادا در زانويةٌ سال ماه يِش از آخرين محاكمهاش، گاليله به دوست خود الا ديوداتى چنين نوشت: وقتى كه مى يرسم خورشيد، ماه، زمبن، ستـارگان، و حركـات و وخـع آنهـا كـار كيست، شايد به من خواهند گفت كه آنهاكار خداست. وقتى كه مى يرسم كتاب مقدس كار كيست، بهيقين به من گفته خواهد شد كه كار روحالقدس؛ يعنى باز هم كار خداست. حالا اگر بيرسم كه خرا روحالقدس كلماتى به كار برده كه براى فهم مردم - عمومآ مردم عامى - تضاد آشكار دارد، اطمينان دارم كه با ذكر امثلةٌ فراوان از نوشته هاى مقدس به من گفته خو اهد شد كه اين رسم كتاب مقدس است كه صدها مطلب در بر داردكه اگر عينآ نقل شو ه، هيزى جز كفر و زندقه نخواهد بود، زيرا در آنها خدا همهون مو جودى سرشار از كينه، خطا، و فراموشكارى جلوه گر مىشود. اكنون اگر بيرسم كه آيا خداوند، آنگونه كه مردم بايد او را بشناسند، بیيوسته كار خود را تغيير داده است، يـا آنكـه طــبيعت، كــ بهدلخواه آدمى تغييرچذير نيست و در دسترس ترار نمىگيرد، آيا هميشه حركت، شكل، و

تتسيمات جهان را ثابت نگاه داشته است، بهيقين به من خو اهند گفت كه ماه هميشه گرد بوده است، ولو آنكه مدتها آنرا هـن بششمار مى آورند. براى آنكه هـئ اينها در يك جمله خلاصه شود بايد كفت: هيجّ كس ادعا نخواهد كرد كه طبيعت، براى آنكه كارش

 خدا را برسى كنيم تاكردارش را. يس آياكردار كمتر از كفتار مقدس و محترم است؟

 كتاب مقدس را فرعى بهشمار آوريم، صدههاى به آن وارد نخواهي شدا شد؛ زيرا

 در Y كليسا برده شد و، در حالى كه به زانو در درآمده بود، حنين "اعتراف
 شخصاً برای دادرسى حاضر شدهام، دز برابر شما عاليجنابان و قدوس مآبان

 استعانت مىطلبم تا مرا يارى فرمايدكه در آينده نيز تعليمات و تبليغات دينى آنها را را بها كار
 مركز عالم پنداشته و آن را غير متحركك دانستهام، بهطور كلى تبرى جويم و از اين بس نيز

دوره́ تاريكى و رنسانس 11 ج
از اين پندار ناصحيح بههيع صورت و وجهى دفاع نكنم و آنرا تعليم ندهمبا كمال ميل حاضرم اين سوءظن شديد و خطرناكى راكه بـحق بـرمن روا داشـتهانـد از خـاطر شــما عاليجنابان و هر مرد مسيحى كاتوليك ديگُى برطرف سازم و، از اين رو، با خلوص قلب و ايمانى راسخ سوگند ياد مىكنم و از اين عقيدهُ غلط و از اين كفر و زندقه و هرگونه بدعت و پندار ناصوابى كه مخالف و مغاير با اصول و تعليمات كليساى مقدس رم بـاشد ابراز انزجار و بيزارى مىكنم، و سوگند مى خورم كه در آينده نيز6 حه كتباً و چهه شفاهاً، از بيان و اظهار هر مطلبى كه باعث توليد حنين سوء ظنى در حق من گردد خوددارى كنم. و ضمناً حنانحه در آينده به زنلـيقى برخوردم ياكسى را مظنون به كفر و الحاد بدانم، او رابه اين دادگاه مقدس يا اعضاى والامقام آن يا به اسقف ايالتى كه در آنـجا اقامت دارم معرفى كنم. بعلاوه سوگند ياد مىكنم و قول مىدهم كه هرگونه مجازاتى راكه اين دادگاه مقدس برايم تعيين كند قبول كنم. و اگر احياناً روزى، خداى ناكرده در آينده، مواعيد و اقوال و سوگندها يا اظهارات كنونى خود را نقص كنم، در حنين حالى بههرگونه زجر و شكنجه و مجازاتى كه از طرف اسقفان مقدس يا قوانين عمومى و خصوصى مـربوط بـه ايـن نـوع جرايم تعيين شود تن در دهم و تمكين كنم. بنابراين بشود كه خداوند مرا يارى و نصرت عطا فرمايد؛ و بكند كه انجيل مقدسى كه آنرا با دستان خود لدس مىكنم مرا كمكك كند. و من، گاليلئو گاليلئى، اينكك توبه و استغفار كرده، قسم ياد مىكنم و قول مىدهم كه مؤمن و صديت باشم. و چنانكه در بالا ذكر شد خود را موظف بهرعايت اين اقوال و سوگندها مىددانم، و اين توبه نامه را با دست خود نوشتهام، كلمه بـه كـلمةٔ آنرا خـوانــده و امـضا كردوlop
جنين نقل شده است كه گاليله بلافاصله پس از „اعتراف") بانگَ برآورد كه (וبا همه اينها، زمين حركت مىكند!ه، اما اين گفته درست نيست و فقط زمينهاى بهدست مىدهد براى نقل اين قصه كه بنابر آن گاليله به تماشاى سگى آرامى مشغول بود كه اشتباهاً در كليسا وارد شده بود و دمش را مى جنباند. جون گاليله به فساد عقيده متهم شده بود، در خان8 ييلاقى خود، نزديكت فلورانس، تو قيف شد. او در ^رُانوية́ TFY ا، هنگامى كه نابينا و از زندگى خسته شده بود، درگذشت.

خداوند گفت „نيوتن بماند!«

 كلاسش بسيار ستيزهجو بود. وتتى اين محصل (كه نامش معلوم نيست) لگدى بر بر شـكــــم آيزكك زد، آيزكك او را به مبارزه طلبيد و به علت (اجوهر ارادهٔ قوى خور خوده) وى را را شكست

 ها ا7 اليسانس خود را بدون هيج امتياز خاصى از دانشگاه بهدست آورد.
(7ヶ \bigcirc سرگذشت فيزيك

پيشر فت نيوتن در دوران همه گيرى
در اواسط تابستان سال 7 7 7 (6 بيمارى طاعون در لندن شيوع يـافت و، در مـدت چچند ماه، از هر ده نفر ساكنان لندن يكت نـفر را بـه هــلاكت رسـاند. در پــاييز دانشگـاه كيمبريج، به علت نزديكى به مركز طاعون، تعطيل شد و دانشجويان به خانههايشان رفتند.
 دانشًاه دوباره باز شد.
اين ^\ ماه گوشه گيرى در روستا ير ثمرترين دوران زندگى او بهشمار مى آيد، و مىتوان گفت كه در همين دوران بود كه نيوتن توانست عملاً آنهمه افكار و نظريههـانـا گرانبهايى را بِّروراند كه جهان را مديون او سازد. براى آنكه عين گفتئ او نقل شود: "در آغاز سال ها 7 ال، من روش حساب سريها و گسترش دو جملهايها را (به هـر صورت و از هر درجه كه باشند) به صورت سرى يافتم. در مـاه مـه روش تـانزانتهـهـاى گرگورى' و سلوزيوس را بهدست آوردم، و در نوامبر روش مستقيم فلوكسيون (اجزاى
 (حساب جامعه) راكشف كردم؟ و بالاخره در همان سال به تفكر در باب اين مسئله هرداختم كه نيروى جاذبه تا مدار ماه امتداد ييدا مىكند... و، بدين ترتيب، پس از سنجش نـيروى لازم برای نگاهدارى ماه بر مدار خود، با قوهُ جاذبهُ سطع زمين، دريافتم كه اين دو با هـ هم تقريباً برابرند...".
بقية زندگى او به بسط و تكميل همين افكار و نظريههايى كه در لينكن شر بهدست آورده بود، اختصاص يافت.
l) نيونن گــرش (x+a) را در صورنى كه m عدد صعيع و مثبت باشر، جنين بيان كرده است: نغ نتش شده است. - م.

70 〇خداوند گفت رنيوتن بماندا؛،
در عضويت انجمن سلطنتى برگزيده شد كه بزرگترين امتياز علمى در انگلستان است. منشى

وى جنين مىنويسد:

 نامرتب داشت: "كفشهايش باز و واشنه خوابيده، و جورابهايش روى كفشهايش افتاده بود. رويوشى دربر داشت، و بندرت با سرى شانه زده و مرتب ديده مى وشد. "بهطورى كه گفته مى شود وى اغلب در سالنهاى خالى به ايراد سخنرانى میيرداخت رياخت و، با تـصور و تـجسم آنكه مستمعين بسيارى در برابرش نشستهاند، رضايت خاطرى حاري

 طبعى بد گمان."

طى سالهايى كه در كيمبريج گذراند، نيوتن به تكميل افكار درخشانى پر دراخت كه در
 داشت. همين مىرساند كه جرا مجموعء اكتثـافات وى خيلى دير انتشــار يـافت: كـارهار مربوط به مكانيك و جاذبئ عمومى در FF سالگى، و كارهاى مربوط به مبحث نـور در ها سالگى.

اصول نيوتن

 دور افكندن اشكال و خواص بنهانى كوشيدهاندك كه بديدهمهاى طبيعت رابا توانين رياضى انيا

 با اثبات دتيق توأم است، و از لحاظ عملى. تمام هنرهاى دستى [مهندسى ـ م متعلق است به

 ججندان دقتى نيست مكانيكى ناميدهاند. اما خطا و اشتنباه در خو د د كار هنرى و و فنى نيست،

من فلسفه [طبيعى] را بيش از هنر درنظر مى گيرم و آنجه كـه مـينويسم دربـارة نيروهاى دستى نيست، بلكه مربوط است به نيروهاى طبيعى و، بخصوص جيزهـايى را

 من مى خواهم كه بتوانيم نتيجهاى بددست آوريم بديدهمهـاى طبيعت را ... از

 هستند، فلاسف تاككون بيهو ده در تجسس طيعت تلاش كردهانم. اما، من اميبدوارم كــ اصول مطرح شده در اينجا يا موضوع را روشن كند يا روش درستـترى بـراى فلسفه
[طبيعى]به بار آورد.

در گفتار فوق، نيو تن تفسير مكانيكى همئ پديدههاى فيزيكى را مـطرح كـرده است.

 هفدهم روشن شود.

سرگذشت فيزيك \bigcirc MA

تعاريف
تعريف 1 - مقدار ماده [جرم] به انـدازء مـقدارى است كـه از وزن مـخصوص و جـنّه [حـجم] آن تو أماً نتيجه مىشود.

بنابراين مقدار هوايى با وزن مخصوص مضاعف در يك فضاى [حجم] مضاعف، جهار برابر، و در يكك فضاى [حجم] سه برابر شش برابر است. همين موضوع بايد در مورد برف و گرد و غبار خيلى ريزى كه بر اثر تراكم يا ميعان فشرده مىشود نيز درست
 جرم هر جسم معين حاصلضرب وزن مخصوص آن است در حجمش].

تعريف Y - مقدار حركت به اندازء مقدارى است كه از سرعت و مقدار ماده با هم نتيجه مىشود. [در اصطلاح علمى امروزه مقدار حركت، حاصل ضرب سرعت است در جرم جسم

متحرك. [
حركت يك مجموعه عبارت است از مجموع حركات اجـزاى آن مـجموعه. در نتيجه، در جسمى كه مقدارش دو برابر است [جرمش دو برابر است]، با همان سرعت، حركت [مقدار حركت] دو برابر است، و با سرعت دو برابر حركت جهار برابر است.

تعريف ${ }^{\text {- نيروى لختى ماده، قدرت مقاومت آن ماده است كه در نتيجه آن هر جسمى با هر اندازه }}$ مادهاى كه در آن هست، وضع فعلى خود را ادامه مىدهد؛ خواه در حال سكون باشد خواه يكنواخت به خط مستقيمى پيش برود. اين نيرو هميشه متناسب است با [جرم] جسم و همان عدم فعاليت جرم است؛ فقط در طرز تصور با آن اختلاف دارد. يك جسم، به سبب طبيعت لختى جرم، بدون اشكال از حال سكون يا از حال حركت خارج نـى شود. با اين حساب، لختى ممكن است نيروى عدم فعاليت ناميده شو د.
$79 \bigcirc$ خداوند گفت „نيوتن بماند!"

تعريف P - نيروى وارد بر يكك جسم عملى است كه براى تغير حال آن جسم، خواه از سكون خواه از حركت مستقيم يكنواخت، بر آن وارد مىشود.
اين نيرو فقط شامل عمل است، و و قتى كه عمل انجام شد ديگر باقى نـى ماند. زيرا يكك جسم هر حالت تازهاى [حركتى] را كه بهدست مى آورد، فقط تو سط لختى خود نگاه مىدار:.. اما نيروهاى وارد از منبعهاى مختلفى هستند؛ از قبيل نيروى كوب ${ }^{\circ}$ و نيروى
فشار و نيروى مركز گريز.

پس از تعريف مفاهيم جرم، گشتاور6 لختى، و نيرو نيوتن قوانين اساسى حركت را
بيان كرد:

قانون 1 - جسمى كه از تأثير نيروى خارجى بركنار باشد ساكن است، و حركت مستقيمالخط يكنواخت

$$
\text { دارد. (شكل } 1 \text { - }
$$

چرتابه ها حركت خود را تا وقتى ادامه مىدهند كه مقاومت هوا حركت آنها را كند
نكند، يا نيروى بماذبة آنها را فرو نكشد. در نقطةُ اوج قسمتهايى كه به عـلت التصـات
همواره از حركت مستقيمالخط منحرف مىشوند، از حركت دورانى خود باز نمىايستنل؛ مگر آنكه متاو مت هوا اين حركت را كُند كند. سيارات و ستـار گـان دنبـالددارى كــ جرمشـان بسيـار زيـاد است، جـون در فضـاهاى آزادتـر بـه مقـاومت هـواى كــترى برمى خورند، حركت خود راها جه در דيشروى و جچه در دوران، مدت بيشترى محفو ظ نگاه مىدارند.

قانون Y - هر تغييرى در مقدار حركت مناسب است با نيرويى كه مو جب تغيير مىشو د، و دامنهاش همان
امتداد نيرو است.
5) percussion

سر گذثت فيزيك \bigcirc
اگر نيرويى حركتى توليد كند، يكت نيروى دو برابر بزرگتر حركتى دو برابر، و يك
نيروى سه برابر حركتى سه برابر توليلـ مىكند، خواه اين نيرو ها همه با هم وازد شرند يا تدر يجاً در پی يكديگر. و اين حركت (كن هميشه در امتداد نيروى مولد حركت است)، اگر جسم قبلاً حركتى, داشتّه باشل، به خركت قبلى, افزوده يا از آن كاسته مىشود؛ برحسب آنكه حركات در يكت جهت يا در خلاف جهت يكديگُر باشند، يا و قتى, كه خر يكك امتداد نيستند چنان به يكديگً اضافه شوند كه حركت جديدى از تركيب آن دو حركت پديد

آيد.
الف)قانون اوّل
 \cdots -

سه قانون نيو تن: (الف) گلولهاى بر يكت سطح انقى، وقتى كی هيَّ نيرويى در امتداد حركتش بر آن وارد نشود، بر امتداد بكت خط راست با سرعتى ثابت حركت مىكند. (ب) اگگ گلولهاى در يكت تفنگ بهوسبلةگازهاى باروت رانده شود، با سرعتى دائماً رو به افزايش به حركت در مى آيل. (ج) دو گلوله به وسيلة فنر فشردهاى كه ميان آن دو قرار دارد با نيروهاى متساوى رانده مىشوند. اگر، در شكل، جرم آنها مساوى فرض شود، با سرعتهاى

متساوى در دو جهت مخالف حركت خواهندكرد.
به گونهاى ديگر، قانون دوم نيوتن را مىتوان تا اندازهاى متفاوت بيان كـرد. خــون مقدار حركت حاصلضرب جرم جسم متحركك در سرعت آن است، نرخ تـغير حـركت حاصلضرب جرم است در تغيرات سرعت؛ يعنى شتاب. از اين رو نتيجه مىشود شتـاب

خ خداوند گفت (رنيوتن بماند!)
جسمى كه تحت تأثير نيرويى قرار دارد، مستقيماً متـاسب است بـا آن نـيرو و مـعكو ساً متناسب است با جرم جسم. بر اساس اين قانون، مىتوانيم واحد نيرويى عرضه كـنيم كــه تعريف آن چنين باشل: نيرويى كه بر جسمى به جرم يكك گرم وارد شو 6 سانتيمتر در ثانيه در ثانيه به آن مىدهد. اين واحد نيرو كه يكك دين خوانده مىشود، نسبتاً كوچك صنعت اغلب واحلى به كار مىبرند كه ه ه ا برابر بزرگتر است، و يكك نيوتن نام دارد. وقتى نيروى معينى كه بر جسمى معين وارد شود به اندازة مسافت مشخصى آن جسم را جابهجا كند، حاصلضرب آن نيرو در مسافت كار انجام يافته به وسيلء آن نيرو است. اگر نيرو بر حسب دين و مسافت بر حسب سانتيمتر بيان شـود، كــار بـا واحــلى بـه نـام اركى اندازهگيرى خواهد شل. در صنعت واحل بزرگترى به نام زول به كار مىرود كه برابر است با ه ه ا ارگك. برای توان (قدرت) نيز، كه مقدار كار انجـام يـافته در واحــل زمـان است، مى توان واحدى تعريف كرد كه معمولاً بر حسب ارگَ در ثانِي اندازهگيرى مى شود و نام خاصى ندارد. در صنعت واحد توان را وات اختيار مىكنند كه برابر است با يكك زول در
 كيلووات است.

قانون يكديگر هميشه مساوى هستند و متو جه به قسمتهاى مخالف [شكل Y - Y هرجه كه جيز ديگرى را بكشد يا بفشارد، به همان ازدازه از طرف آن جيز كشيده يا فشرده مىشود. اگر انگشت خود با بر سنگى فشار دهيد، سنگك نيز فشارى بر انگشت شما وارد مىكند. اگر يك اسب سنگى راكه به ريسمانى بسته است بكشد، بهطور مساوى، خودش هم به وسيلة سنگك به عقب كشيده خو اهد شد؛ زيرا ريسمان كشيده شده با همان تلاشى كه براى رهايى و شل كردن خودش به كار مىبرد، اسب را نيز به همان اندازه به سوى سنگ خواهد كشيد كه سنگگ را به سوى اسب مىكشد؛ و به همان انـدازه مـانع پيشرفت يكى خواهد شد كه مو جب يِشروى ديگرى مىشود

O \quad سركذشت فيزيك
 جواب اين است كه اختلاف، در اصطكاكث در برابر زمين است. جهار نعل اسب بير بيشتر از

 روى يخ استخر ايستادهانن، تكانى به يكديگر بدهن برند، مرد لاغر با با سرعت بيشترى بـر به عقب
 گلولهاى كه (خيلى سبكتر) از لولئ آن خارج مى مشود.

 r) وتى كی مأموران يرتاب موشك مى خوامند موشكى را برتاب كند، به اين ترتبب مىشمارند و وتىىك گفتد: صغر موشك را آتش میكتند. - م .

خr
اما برایى آنكه به بحث نيو تن بازگرديـم، بدون آنكه مسائل پرواز فضايى را يكبـاره كنار بگذاريمَ بايل ذ كر كنيم كه وى نخستين كسى بوده كه فكر يكك قمر زمينى را در سر

داشته است. در جلد سوم اصول حنين مى خو انيمْ: اگر حركات برتابها را در نظر بگيريم، مىتوانيم بسهولت درك كنيم كـه چرا سيـارات به و سيلهُ نيرو هاى مركز گريز مدكن است بر روى مدارهاى معينى بمانند، زيرا سنگگ پرتاب شده به واسطهُ فشار وزن خودش وادار مى شود كه از مسير مستقيمالخطى كه بر اثر فقط پرتاب اوليه بايستى بيروى كند خارج شو د. در نتيجه خطط منحنى را در هو ا مى ييمايد و از همين راه كج عاقبت به زمين مىرسد؛ و هرجه سرعت برتاب آن بزرگتر باشد، پيش از رسيدن به زمين دورتر مىرود. در نتيحه، مىتوانيم فرض كنيم كه سرعت جنان افزايش
 به زمين برسد ببيمايد تا زمانى كه سرانجام، از حدود زمين كه خارج شد، بدون برخورد با آن به فضا برود. سطع زمين را با AFB [شكل r - Y [نمايش مىدهيم. C مركز زمين است، و VF ،VE ،VD خطو طى منحنى هستند كه يكت جسم مى پيمايد اگر از قلّ كو هى بلند [بى شكت جايى در بلند بومهاى اسكاتلند [با سرعتى رو به فزونى پرتاب شود. و، بهعلت اينكه حركات سماوى بندرت بهو سيلة مقاو مت كم يا صفر فضاهايى كه در آنها حركت صورت مىگیرد كند مىشوند، براى محفوظ نگاهداشتن برابرى حالات، فـرش كنيم كه هوايى در اطراف زمين و جود ندارد، يا اگر و جود دارد مقاومتى از خود نشان نمى دهد. به همين دلِل كه جسم ايزتاب شده با سرعت كمتر قوس كو تاهتر CD و با سرعت
 مى مودد، اگر سرعت باز هم زياد شود، عاقبت، جسم بهَّآن سوى محيط زمهن مىرسد و به كوهى كه از آن پرتاب شده بود باز مىگردد ... اما اگر اجسامى را تصور كنيم كه در امتداد خطوطى موازى با افـق از ارتفـاعات
 چرتاب شوند، اين اجسام بنابر همين سرعتهاى متفاوت و بنابر نيروى جاذبئ متفاوت در

سرگخشت فيزيك \bigcirc

ارتفاعات مختلف قو سهايى را خو اهند بيمو دكه يا هم مركز با زمين هستند يا خارج از مركز؛ و در آسمانها، همحچون سيارات بر ملارهايشان، بر مدارهاى خود دوران مىكننل.

 شدهاند مىانتند (از شكل اصلى رسم شده در اصول نيوتن).

اين دو قسمت از كتاب اصول شامل اين نظريه است كه يكت نيرو، و هميشه همـان نيرو، كه نيروى جاذبه است، موجب سقوط يكك سنگک و اجسام سماوى، هـر دو، است ـ نظريهاى كه ادعا مىشود نتختين بار نيو تن با مشاهده سيبى كه از دزختى افتاد، بـهدست آورد.
براى آنكه نيروى جاذبه و مسافت آنرا از مركز زمين به يكديگر ارتباط دهد، نيوتن بر آن شدكه سقوط يكك سنگك (يا سيب) را بر سطع كره́ زمين باكرهٔ ماه مقايسه كند، تا حركت آن بنابر استدلال فوق خون سقوط بى پيايانى در نظر گرفته شـود. در ايـن مـورد نيو تن قادر بود كه نيروى (انجومى)" وارد بر ماه را با نيروى (ازمينى" وارد بـر اشيـايى كـه روزانه با آنها سر و كار داريم مقايسه كند. استدلال نيوتن تا اندازهاى تغير شكل يافته، در شكل Y - Y نمو ده شده است كه ماه M را در دوران برگرد زمين E بر روى مسيرى (تقريباً) دايـرهاى شكل نشـان مـىدهد.!

در موضع M، ماه داراى سرعتى است عدود بر شعاع زمين. آگر هيجِ نيرويى در كار نبود،

 است، "M'M بايد همحوون مسافتى بششمار آيد كه ماه در واحد زمانه، در در سقوط آزاد خود
 ($\mathrm{MM}^{\prime} \leq E M$ كه مقدار جبرى آن (بهازایى $\mathrm{M}^{\prime} \mathrm{M}^{\prime \prime}=\sqrt{\left.(\mathrm{EM})^{r}+\mathrm{MM}^{\prime}\right)^{r}}-\mathrm{EM}$ خيلى نزديك است به سرعت زاويهاى ماه است در حركتش بر گر گرد زم

شك r - r re

شده در واحد زمان اول (ثانيه) برابر است با نصف مقدارى كه (شتاب)) ناميده بوديم. به اين
 (MM /EM)r x EM
 مقدار شتاب مربوط به جاذبه در مسافت

 كه درست مساوى است با مجذور عددى كه نسبت شعاع مدار ماه را به شعاع زمين نشان
 مسافت از مركز زمين كاهش مىيابند.

 است با جرم آنها و بهطور معكوس متتاسب است با مجذور فار ناصلة ميان آنها اين قانون در مورد حركت سيارات بر گرد خورشيد، بيان رياضى سه قانون كيلر را، كه در نصل بيش توصيف شد، نتيجه گرفت.
تكميل آثار نيوتن توسط رياضيدانان قرون هجدهم و نوزدهم مـنجر بـه بـيدايش

YY خ خداوند گفت رنيو نن بماند!!،
كه، در نتيجهٔ محاسبات نظرى، منجر به كشف يكت سيارهٔ ماوراى نָتونى شد كـه بـعدها پلو تون نام گرفت.
نيوتن با استفاده از قانون گرانشى خودش دربارهٔ حركت زمين، بـراى نـخستين بـار
 جون محور دوران زمين نسبت به سطح مدارش (دايرةالبروج) تمايل دارد، نيروهاى جاى جاذبئ خورشيد، كه بر برآمدگيهاى استوايى كرهٔ زمين وارد مىشوند، بايد موجب دوران بطىء

 امتداد مى بيبايد.

محور دوران زمين در حول خطى عمود بر دايرةالبروج در مدتى حدود Y سـال

 تطب آن بزرگتر از قطر استوايى است.

براى تحقيق دربارهٔ اين نظريه، رياضيدان فرانسوى مويرتوى ^ هيتّى اكتثافى براى
 شمالى اندازهگيرى كنند؛ در طول اين سفر، با گرگهـاى آن ديـار مـاجراهـا داشـا داشت. ايـن اندازه گيرى ثابت كرد كه نظريههاى نيوتن درست بوده است و ولتر، به شوخى، اين دو

مصرع را به وى نوشت: شما در جاهايى پر دردسر چيزى را تأيد كردهايد

vivs

توضيع نيو تن دربار؛ كشند هاى اقيانوسى. جون نيروى جاذبه با مسافت نسبت به خورشيد كامش مىيابِ، نيرويى كه بر آب

 زمين وارد مىشود. نتيجأ اين اختلاف آن است كه سطح 'آب در سمت روزكرئ زمين متمايل به بالا آمدن از عمن افيانوس است، حال آنكه در سمت شب سطح كرة زمبن تعر افبانوس راز زير سطح اقيانوس كشيده مىشود.ه اين دو اثر با مم منجر به تشكيل در برآمدگى در آب تو أم با دوران زمين بر گرد محورش؛ چحون دو موج كشندى مشهود مىشود كه كر؛ زمين را در مدت MF ساعت
مى بيمايد.
9) Maupertuis

10) Vous avez confirmé dans les lieux pleins d'ennui Ce que Newton connát sans sortir de chez lui.

Y خداوند گفت رانيوتن بماند!،
تمام صفحات ككاب اصول نيوتن ير از اطلاعاتى دربارة هــمةٔ شعبههــاى دينـاميكـ جامدات و مايعات است. اما در اينجا فقط يك مسئلة ديگر را ذكر مى كينيم؛ هون سارئ ساده و جالب است. اين مسئله مربوط است به حركت ير تابههايى كه با سرعت اولئّ معينى در يك
 دوباره ييحركت شوند؟
اوضاع و احوالى در شكل

 تونل و طول گلوله بايد به نسبت جرم مخصوص مادء گلوله و جـرم مـخصوص مـــيط باشد.

شكل

تؤورى نيوتن در مورد نفوذ يرتابها در يكت محبط

- ○ 1• سركذشت فيزيك

كه البته فقط با تقريب بسيار زياد درست است. اما، حتى در اين صورت نيز مى توانيم از اين

 گلولههاى سنگين توپبخانهاى دريايى، كه ممكن است حدود ها / ا امتر يا بيشتر طول داشته

 مى مند. در آب، كه فقط حدود ده بار سبكتر از فلز است، گلوله قسمت عمده انرّ انرّى خود

 سرعت به اندازء كافى زياد باشد). همين واقعيت است كه كار شناسان نظامى ايالات متحد

 موضوع را در كتاب اصول نيوتن به آنان نشان داد.

ديناميك و استاتيك سيالها

مطالعات نيوتن درباره تعادل و حركت سيالها رارياضيدان فرانسوى، بلز ' ' ياساسكال، و

خ خاوند گفت رنيوتن بماندا!،
نيون ال IV ساله بود، و برنويى به هنگام نوت نيوتن YV سال داشت. قانون هاسكال، كه با
 مايع باشد خواه گاز)، وتتى كه درون ظرف بستهاى متراكم شود، نيروى واحدى واحدى بر ور واحد سطح هر قسمت از جدار ظرف وارد مىكند. اصل پياسكال ورال موارد استعمـال فـراوانـى در

 مقدار جابهجا شدن يستون در لولهُ باريكتر.
قانون برنويى متعلق است به حركت سيالها در لولههايى با با تطرهاى متا متفاوت و، در در نظر

 باريكتر لوله كمتر است از فشار آب در مقطع گشادتر آن. توضيح اين موضوع با تو توجه به بـي تغير سرعت جريان آب در مقطعهاى مختلف لوله بهدست مى آيد. در مقطع بزرگّتر لولي آب نسبتاً كند حركت مىكند، و وتتى وارد مقطع باريكتر مىشود سرعتش زياد مىگردد.

r-v شكل
بنابر قانون پاسكال، نيرویى كه بهرسيل؛ دست وارد مىشود مىتواند بار سنگينى را بلند كند.

 بايد در امتداد جريان آب وارد شود و فشار در لولهُ گشادتر بايد زيادتر از نشار در لولؤ باريكتر باشد.

A ${ }^{\text {AN }}$

اصل برنوع. (الن) بك آزمابش ساده. (ب) بك لولا نيرنگث ساز. (ج) طرز كار يكت موايمها.
براى اثبات اين واقعيت نيازى به كمك يكت متخصص لوله كشى نيست، بلكه فراهم

 سنجاق را در مركز قرص فرو كنيد و آنرا مطابق شكل جنان در در در لوله وارد كنيد كه وزن

 خود لوله است، بهطورى كه فشار هوا در آنجا خيلى كمتر از فشار فشار جو است. درنتيجه انيه فشار هواى خارج، قرص را بر انتهاى لوله مىفشارد.

سرگذشت فيزيك \bigcirc AF
اثر برنويى وجود نيروهايى را هم كه بالهاى يك هوابيماى در حال یـرواز تـحمل

 مىىند. اختلاف ميان اين دو فشار موجب بالا رفتن هواييما مىشود.

مبحث نور
در اينجا ناگزيريم كه بحث دربارء مكانيك نيوتنى را بكلى پايان دهيم تا جايى برای

 مىرفت، حراغى را در اتاق خود روشن گَذاشت. آتشـى كـه بـر حسب تصـادف از آن افروخته شد، نوشتههاى وى را از ميان برد كه شامل قسمت مهمى از آثارش دربارهٔ نور بود و آزمايشها و تحقيقات بيست سال كار او را دربر داشت. از اين رو نخستين حاپ از از كتاب

 نظر يه هاى مخالف رقيب سرسخت خو د، رابرت هوكك، كه درست يكت سال يس از از آنكه

 ثابت مى كند كه نور هايى با رنگهاى مختلف تابليت انكسار مختلفى دارند.

A』 خداوند گفت „نيوتن بماند!!،

الف

شا
آزماشش نيو تن دربارة انكــار نور
برا'ى اثبات اين موضوع، نيوتن برگهٔ مقوايى درازى را اختيار كرد كه نيمى از آن بـ به
 وسيلهُ يك منشور شيشهاى در آن نگاه كرد (شكل و ه - ب). عين گفتار نيوتن در اين باره
 كاغذ بتواند بر اثر انكسار بالاتر بهنظر برسد، نيمهٔ آبى رنگگ آنه بر اثر انكسار نور، بيشتر

 كه نوز 'آبى شديدتر از نور سرخ منعكس مى شو د، و نتيجه گرفت كه يك عـك عدسى بايد اشعه

 به وسيله شمعى روشن مىشد (جون آزمايش در شب صورت گرفته بود) و، با استفاده از

○ 17
يك عــدسى، تــصوير واخــحى را بــر روى يك تكــــكأكــاغذ جست وجــو كــرد (شكل 9 - r ب). براى سنجش تصوير، حند رشته نخ سياه در عرض كاغذ كشيده بـود.
 يادداشت كردن حتىالامكان دقيق جاهايى كه تصاوير نيمةٔ سرخ و نيمةٔ آبى كاغذ واضحتر نمايان مىشدند، دريافتم در جايى كه نيمةٔ سرخ كاغذ واضح نمايان مى شود نيمةٔ آبى مبهم مى ممايد؛ بهطورى كه نخهاى سياه بالاى آنرا بسختى مىتوان ديد و، به عكس، در جايى

 مشخص، در فاصلهاى كمتر از فاصلهایى ديده مى شود كه در آن تصوير قسمت سرخ واضع

و مشخص مىنمود.
آزمايش بعدى نيو تن آزمايشى بود كه از طريق آن بتواند بييند كه وقتى نور سفيد از منشور مىگذرد چهه روى ميدهد. نيو تن سوراخ كو چكى در ینجره ايجاد كرد، و در مسير

 يعنى وضعى كه بدون منشور يشش مى آمد، تصوير كشيدهاى را مشاهده كرد كه بالایى آن آن آبى كمرنگگ و هايِن آن سرخ كمرنگگ بود. اين مشاهده وى را به اين نظريه رساند كه نور سفيد ممكن است از اشعهاى به رزنگهاى گونا گون تشكيل شده باشد: از انكسار پذيرترين اشعه كه اشعة آبى است، تا اشعة سرخ كه انكساریذيرى كمترى دارد. اگگر حـنين بـاشد تصوير كشيدهاى كه بر روى یـرده نمـايان مـىشود، از تصـاوير فـراوان خـورشيدى در رنگهاى مختلف تشكيل يافته كه بر هم منطبق و فقط در مواضع انتهايى آبى و سرخ خالص
 عدسى در پرتو نور وارد كرد تا تصوير سوراخ كو چكك را بر پيرده متمركز سازد (شكـل
 زرد، سبز، آبى، و بنفش كه تمام صبغههاى مابين آنها را نيز شامل بود. اين نخستين ("طيفنما")

AY O خداوند گمت رانيدر تن بماند!؛

و اولين دليل بود بر اين واقعيت كه نور سفيد از زنگَهاى همه رنگیى تشكيلـ يافتَ است كه داراى قابليت انكسار متفاو تند.

براى خو انندهٔ امروزى 'آزمايشهاى نيو تن با منشور ممخن است بسبار كو دكانه بنهايلـ، زيرا واضح است كه اككنو هر كودكى مىتواند بسهولت آنها را انجام =مد. اما در زمـان نيو تن وضع كاملاً متفاوت بو د؛ زمانى كه همه عقيده بر اين داشتند كه زنگیين ندايى نـور آفتابى كه از شيشههاى رنگگین پنجر دهاى كليساهاى قد يمى عبو ز مىكند، چیز ى است شبيه به رنگگين ساختن پارچههاى سفيد با فرو بردن آنها در محلولى از رنگگهاى مختلف. أكنون
 ياخته هايى كه به نور هاى سرخ، سبز، و آبى حساسند. از آنجايى كه همهُ رنگگهاى طيفى به يكک نسبت وجود دارند، آبخحنانکه در نور خور شيد چنين است، و عضو باصره تحت تأثير آن در طى صدها ميليون سال تكامل موجودات زنده6 .تكامل يافته است، ما احساس نور (امعمولى"). يا به بيان عادى نور (اسفيل) مىكنيم. وقتى كه فقط جزئى از طيف وجود داشته باشد، رنگگهاى مختلف را احساس مىكنيم.

○ \bigcirc 人
يكى از موارد استعمال مهم كشف نيوتن مبنى بر اينكه شعاعهايى به رنگچاى مختلف داراى قابليت انكسار مختلف هستند، نظريه وى درباره رنگين كمان بود. اين تجلى زيباى
 سنگين Tسمان رايوشاندهاست. بنابر توضيح نيوتن، آنجه كهدر اين حالتمى بينيم، درواقع

 را واقعــاً يش مى آيد نشان مىدهد. اشعـــن نور سفيد از خورشيد (كه با با خطوط سياه در

r-II شكل
توضبع نبو تن دربار: رنكبن كمان

 دماى سفيد داغ شدهاند تابش مىشود.

خداوند گفت رنيوتن بماند!،
خورشيد ايستاده است، رنگهاى مختلف را از جهات مـختلف آسمـان مشـاهده مـى كند. وجود چند رنغين كمان متحدالمركز با اين فرض توجيه مىشود كه اشعهُ سفيد آنتاب، به

 انكسار) اشعهُ نور از بلور هاى يخى كه ابرهاى پر ارتفاع معروف بـه سـيروس را تشكـيل

وتتى نيوتن نشان داد كه رنگهـاى مختلف تابليت انكسـار متفاوت دارنده بـه اشتباه
 ذاتى در آنهاست، زيرا رنگهاى مختلف نور نمىتواند در يك يك فاصله از از عدسى تـمركز

 (اانعكاسى)، ساخت كه در شكل

 لوله قرار داشت، منعكس مىشد و در نقطه 'O، خارج از لوله در جايى كه تصوير ديده

تلسكرب انعكاسى نيو تن

شود، جمع مى شد. اشتباه نيوتن در اين مورد،، بها اين علت بود كه عقيده داشت مواد شو شفياف مختلف رنگهاى گوناگون را به يكك نحو منكسر مى كنند. و يس از مرگش دريافتند كه اين فرضيه درست نبوده است و، درواقع، تمركز دادن نوزهاى سرخ رو و آبى در يكك نقطه بـا بـا
 است. با همئ اينها، تلسكو يهاى انعكاسى كه در آنها آينههاى شـلجمى بـزرگك بــه جـاى

 در امريكا) عدسيهاى تلسكو جهاى انعكاسىاند.
يكى ديگَر از كشفيات جالب نيوتن (احلقههاى نيوتن،) است كه بر گر گرد نقطهُ تماس يكك عدسى محدب با يك تكه شيشهٔ تخت آشكار مـىشود. نـيوتن ايـن كـار را حـنين

توصيف مى كند:
ديخران مشاهدهكردداند كه وقتى در اجسام شفاف از قبل شيشه، آب، هو او غيره بدمند تا تا

 ها F/r

$91 \bigcirc$ خداوند گفت (انيوتن بماندا)،
رويى را از روى شيشهُ زيرين برداشتم تا رنگها را بتدريج در همان جا محو سازم. رنگى كه بر اثر فشردن شيشهها بر هم، در آخر كار، در ميان ديگر رنگها نهايان شد، در نخستين דيدايش, خود به دايرهاى مىمماند كه رنگش از محيط تا مركز تقريباً يكنواخت بود، و باز هم با فشردن شيشهها بر هم پيو سته وسيعتر مىشد تا آنكه يك رنگك جديد در مركز آن نـو دار و، در نتيجه، حلقهاى شد كه اين رنگك جليد را فراگرفته بود. و باز هم، با فشردن شيشهها بر هم، تطر اين حلقهها افزايش مىيافت، و وسعت مدار يا محيط كم مىشد تا وتتى كه يك رنگك جديد ديگر در مركز رنگك آخرى نمايان مىشد. به همين نحو تا وقتى كه يك سومى، يك خهارمى، يكت بنجمى، و رنگهاى جديد ديگر در آنجط آشكـار شــوند و حلقه هايى شوند كه درونترين رنگك را فراگرفتهاند؛ و آخرين آنها سياه بود. و، بر عكس، وقتى كه شيشهُ بالايى از روى شيشهُ زيرين برداشته مىشد، قطر حلقهها كاهش مىيافت و وسعت مدارشان افزايش پيدا مىكرد تا وقتى كه رنگهاى آنها بتلديج به مركز برسد و آن وقت، جون وسعت قابل ملاحظهاى بيلا مىكردند، ديگر بسهولت نـى توانستم جنس آنها را مٌل بيش تميز دهم. و بدين وسيله توالى و مقدار آنها را به ترتبب زير مشاهده كردم. هس از نقطهُ مركزى شفافى كه بر اثو تماس شيشه حاصل مىشد، رنگهاى آبى، سفيد، زرد، و سرخ مى آمدند. آبى از حيث مقدار به اندازهاى كم بود كه نتوانسـتم آنرا در دوايرى كه بهوسيلة منشورها تشكيل مىشد تشخيص دهم؛ و نيز نتوانستم هيج بنفشى را بخوبى در آن بيابم؛ اما زرد و سرخ خيلى فراوان بود و از لحاظ وسعت به اندازه سفيد و جهار يا ینج برابر وسيعتر از آبى به نظر مىرسيدند. ترتيب بعدى در رنگهايى كه بلافاصله اينها را فرا گرفته بود - بنف، آبى، سبز، زرد، و سرخ - بود - اين رنگها همگى فراوان و واخع و زنده بودند جز سبز كه از لحاظ مقدار بسيار كو جك بود و از ديگر رنگها بسيار ضعيفتر و رقيقتر به نظر مىرسيد. از جهار رنگت ديگر، بنفش از لحاظ وسعت كترين آنها، و آبى كمتر از زرد يا سرخ بود. سومين ترتيب در رنگها ارغوانى، آبى، سبز، زرد، و سرخ بود كه در آن ارغوانى تندتر و زنندهتر از بنفش در ترتيب قبلى به نظر مىرسيد و سبز خيلى هويداتر بود به اندازه هريك از رنگها جز زرد، اما سرخ خعيفتر و خـيلى متــايل بــ

يك طول مو ج، بددست آمهه است.|

r-ir mer
تشكيل حالةهاك نيون
با اندازهگيرى شعاعهاى نـخستين شش حـلقه إدر روشـنترين قسمتهـايشانا، نـيوتن

 و $\sqrt{\Delta}=r / Y F!\sqrt{F}=r$

 افزايش مى ايابل. با دانستن شعاع عدسى محدب، نيو تن توانست بسهولت ضخامت طوت طبقه هوا

خr 〇خداوند گفت „نيوتن بماند!",
 تاريكى است كه بهو سيلهٔ اشعهٔ عمو دى ساخته شده است، و نصف اين ضخامت ضربدر

ضخامت آن در تاريكترين قسمتهاى همهُ حلقه هاى تاريكت است.
برخلاف ادعاى نـيو تن كـه در فـوق نـقل شــد، مـنـنى بـر ايـنكه رنگگهـاى رنگگـين كمان مربوط به لا يههاى نازك (ابراى اثبات خو اص نور ضرورت ندارند)، حلقههاى نيو تن يكى از بهترين دلايل طبيعت مو جى نور است كه درستى آنرا نيو تن تا هنگام مرگك خود نخواست قبول كند. حلقهها در نتيجه (اتداخل") ميان دو پرتو نور منعكس شده از سطوح شيشهاى است كه بهو سيلة فاصلة متغيرى از هم جدا شدهاند. وقتى كه يكك دسته بر تو از بالا بر مرز ميان دو عدسى مى تابل، قسمتى از آن انعكاس مىيابد؛ در حالى كه بقئَ آن در هوا وارد مىشود. يكك انعكاس نسبى ديگر هنگام ورود بر تو در شيشَ عدسى زيرين صورت مىى
 امواج بهوسيله خطوط سايهدار و سفيدى كه مربوطند به فرازها و نشيبهاى آنها نشان داده شده است. و نيز برای اجتتاب از انطباق דرتوهاى نور، آنها را درست عــمود بـر فـصل مشتركك دو سطح نشان ندادهايم؛ اين حالتى است كه واقعاً روى مىدهد، زيرا منبع نور و
 مى.ينيم كه وقتى ضخامت طبقة هوا مساوى نـصف طـول مـوج نـور تـابش است، روى مىدهد (در شكل، طول موج مربوط است به طول يكك قسمت هاشور زده و يكك قسمت سفيد با هم). در اين حالت، موج منعكس شده از سطح زيرين به موج مسنعكس شــده از سطع رويى جنان مى بيوندد كه بر آمدگى نخستين موج با فرو رفتگیهای موج دوم منطبق

الف

r-if
توضي بانگت دربارة حلفتهماي نيون
 دادهايم كه در آن، ضخامت يكت دور فو ايا حالت از فرازى به فراز ديگر و از نشيبى به نشيب ديگر منتشر مىشوندا

 به ازاى هر تغير افزايش ضخام امتى برابر با

 مىدانيم، اين مقدار درست همان طول موج نور زردد، روشنترين قسـمت طـيف مـرئى،

ه』 خداوند گفت رنيوتن بماند!",
اما نيو تن با نظريهٔ موجى نور شديداً مخالف بود، و اين مخالفت بيشتر از آن جهت بود كه نمىدانست حگَونه ممكن است انتشار مستقيمالخط نور توجيه شـود. وى اصسرار مىورزيد كه نور بايد روانهاى (جريان) از ذرات باشد كه با سرعت بسيار زيادى در فضا
 (احالات انعكاس و انتقال آسان") وضع كرد كه بنابر آن: هر شعاع نور، در ضمن عبور از هر سطح منكسر كننده، به حالت ناپايدارى در مى آيد كه در بيشروى شعاع به فو اصل باز مىگردد. و شعاع رادر هر بازگشت آماده مى سازد كه بسهولت به سطح منكسر كننده بعدى انتقال يابد، و در بين بازگشنها بسهولت بهو سيلهُ آن

سطح منعكس شود.
${ }^{17}{ }^{17}$ مىناميم، و وى چنين نتيجه گرفت كه اين (طول حالت)" در مورد نور سرخ بزرگتر است و در مورد نور 'آبى كو چکتر. اما وى چنين مىنويسد: .ي اين جه نوع عمل يا وضعى است. آيا شامل حركت مستدير است يا يكت حركت مو جى
نور يا حركت محيط، يا حيز ديگر. در اينجا نمى تو انم آنرا بررسى كنم.

مردى كه با بحثهاى نيو تن دربارهُ جنس و طبيعت نور مخالف بود و عاقبت هـم نظرئ او ييروز شد، فيز يكدان هلندى، كريستيان هويگنس، بود كه اr سال بيش إز نيو تن داشت. هويگنس به دلايلى كه در قسمتى از كتاب وى، مبحث نور (انتشار يافته به سال • 9 ())، بخوبى خلاصه شده است، ترجيح مىداد كه نور را، به جاى آنكه پرتوى از ذرات تندرو بشمارد، همحچون امواجى در نظر بگیيرد كه در محيطى جهانى كه همةٔ فضا را بر كردد است انتشار مىيابل.
در بارهٔ انتشار مستقيهالخط اشعهٔ نور
روش استدلالى در مبحث نور، درست مانند هر علدى كه در آن هندسه به كار مىزود، مبنى بر حقايقى است كه از تحربه نتيجه شده است؛ مثلا اين واقعيت كه اشععُ نور به خط
16) Wave length

مستقيم منتشر مىشوند و اينكه زاوئ انعكاس برابر است با زاويئ تابش و نيز انكسار تابع قانون سينوسهاست، كه امروزه بخربى شناخته شده است،و بسيارى واقعيتهاى ديغر.
 اكتفا كردهاند كه اين حقايق را مسلم بندارند. بعضى از آنان، كه بيشتر تحقيق مىكردندانلـ، جون مىديدند كه اين حقايق هبجون آثار شكغت طبيعت بهشّمار میروند، در بی اين بودند كه مبدأ و علل آنها راكثف كند. اما جون عقايد بهدست آمده، با آنكه زيركانه

 كسانى كه اين اميد را برانگيختهاند كه امكان تونياني
 سسقق و ثابت شده به شمار آوردهاند - نتايجى كى بسيار سست و نابايليار است. زيرا تا تا جايى كه اطلاع قطعى دارم، هنو زكسى توضيح رضايتبخثى دربارة حتى اين نخستين و
 اشعههايى كه از امتدادهاى بينهايت گوناگون بكديگر را כطع مىكند. بدين جهت در اين كتاب خواهم كوشيد تا، بنابر اصولى كه در فلسفهُ معاصر برقرار است، دلايل واضحتر و مهترى، اولأ، برای خواي اصن انتشار مستقيمالخط نور ور و، در در ثانى،

مىرود، بحث خوامم كرد.

YY
بر رسى خود رابا تحقيق در انكسار شگَت نور، در بلور خاصى كه از ايسلند آورده
 منعكس كنندهاى بحث خوامم كر د كه، بهو سيله آنها، اشعهها يا وادار به تم تمركز در در نقطهاى

 ديگُر منحنيهايى كه دكارت هو شمندانه براى توضيح اين ائر بدانها اشار هو كرده اسه است، بلكه
 سطح ديگر آن كروى، مسطح، يا شكلى ديگُر است.
اكنون، حون با اين منطق محقق است كه حس بينايى فقط به واسطهُ تأثير حـركت

مىدانيم كه صوت بهوسيلئ هوا، كه جسمى است نامر ئى و نــامحسوس، در تمـامى

 مىگيرد، سطوحى كروى بايد تشكيل شود كه بتدريج از منبع خود دور شود تا بـ كَ گوش ما

1^ \bigcirc سركذشت فيزيك
برسد. اكنون شكى نيست كه نور نيز از اجسام نورانى بهوسيلة حركتى به ما مىرسد كه به

 نور براى طى كردن مسير خود احتياج به زمان داشته باشد، نتيجه مى انتقال يافته به ماده بايد تدريجى باشد و مثل صوت بر بر سطوح كروى و موجى منتشر شود؛

آب مىينيم با درنظر گرفتن انتشار امواج، خواه اين امواج بر سطح آب باشند يا در هـوا يـا در
 سادهاى نهاد كه اكنون به نام وى خوا خانده مىشود

 نقطهُ سقوط سنگك در آب پراكنده مىشود. اگَ اگر موضع موج را در لحظهُ معينى درنـظر
 نقطه در جبهُ يك موج در حال انتشار مىتواند همجون منبع موج جديد يا موجكى به شمار
 موضع سابقش انتشار يافته است. اين نظريه در شكل اه ا ـ با ب، در مورد سادهترين حالات يكك موج دايرهاى و يكك موج تخت، مصور شده است. جالبترين مورد استعمال اصل هويگنس، توخيح آن درباره ان انكسار نور بود كــه در

$99 \bigcirc$ خداوند گفت ر(نيوتن بماند!!،
شكل مربوط است به لحظهاى كه جبهءّ موجى بيشرونده درست از نقطهٔ d آغاز حركت كرده است. براى بيدا كردن موضع جبهءّ موجى در شيشه، بايد مماس مشتركى بـر تمـام موجكها رسم كنيم كه در اين حالت يكت خط مستقيم است. اگرك چنانكه در ترسيم شكل فرض شده است، سرعت نور در شيشه كمتر از سرعت نـور در هـوا بـاشد (يـعنى،اگـر شعاعهاى موجكهاى كروى در شيشه كوجكتر باشند از فواصل ميان مواضع متوالى جبهء موجى در هوا)، جبهء موجى در شيشه رو به هايِن خم مى شود و اشعءّ منكسر شده به خط قائم نزديكتر خواهد بود تا به شعاع تابش؛ و اين حالتى است كه واقعاً وقتى كه نور از هوا در شيشه وارد مىشود، روى مىدهد. اگر سرعت نور در شيشه زيادتر از سرعت آن در

اصل مويگنس دربار؛ انتشار مرج

توضيع مربگنس دربارة انكسار نور

- •

هوا باشده عكس اين وضع یديد مى آيد. برایى يافتن رابطه ميان زاويــٔ تـابش i i و زاويـهٔ انكسار rırı، دو مثلث قائمالزاوية bde و و bdf را درنظر مىگيريم كه وترشان مشتركك

است. بنابر تعريف سينوس:

$$
\sin \mathrm{i}=\frac{\mathrm{ed}}{\mathrm{bd}} \quad ; \quad \sin \mathrm{r}=\frac{\mathrm{bf}}{\mathrm{bd}}
$$

اگر رابطهُ اول را بر رابطءٔ دوم تقسيم كنيم، نتيجه مى شود:

$$
\frac{\sin i}{\sin r}=\frac{\mathrm{ed}}{b f}=\frac{1 \mathrm{ov}}{\mathrm{~V}}
$$

 همان قانون اسنل است با اين اصلاح كه نسبت دو سينوس، كه به ضريب انكسار مـعروف است، برابر است با نسبت سرعتهاى نور در دو محيط. در نتيجه، سرعت نـور در مـحيط

غليظتر (مل شيشه) كمتر است از سرعت نور در محيط رقيقتر (مثل هوا). توجه به اين نكته جالب است كه نظريءٔ ذرهاى نيوتن دربارهٔ نور، ما رادرست بـر نـر نتايج مخالفى مىرساند. حقيقت اين است كه براى توضيح خم شدن اشعهاى كه از هوا در آب وارد مى شود، بر اساس نظريه́ ذرهایى، لازم است فرض شود كه نيرويى عمود بـر فـصل دو مشتركك وجود دارد كه ذرات نور را، هنگام برخورد، در آن مىكشد. در در اين حالت، البته سرعت در شيشه بزرگتر است از سرعت در هوا.
بيروزى نظريهُ مو جى نور

مدت بسيار درازى طول كشيد تا نظريهّ مـوجى هـويگنس دربـاره نـور، بـا وجـود

 هويگنس در تكميل نظريههايش با دقت رياخى كافى كه بتواند آن نظريهها را دا در مقابل هر مخالفتى آسيبنايذير سازد. از اينرو، موضوع جنس و طبيعت نور مدت يك قرن معلق
 جبهاه مو جي و اين مرز.

خداوند كفت رنيوتن بماندا!،
ماند، تا آنكه در سال . . ^^ نشريهاى تحت عنوان اططرح آزمايشها و تحقيقات مربوط به

 شخصى خودش را توصيف كرد كه در آن تداخل دو يرتو نور مى تواند به طرز سادهترى

 تصوير است، به فاصلءّ مساوى از دو سوراخ O و 'O قرار دارد و امواج نوران درانى (هممفاز) به

 كه براى آنها bO-b'O و dO- d'O به اندازء
 باريكههاى تاريك مشاهده خواهد شد
كارهاى تامس يانگگ و معاصر فرانسويش اوگوستن فرنل • 「صحت و اعتبار نظرية
 در استدلال فرضيههاهى تمام دوران زندگى خرّى خويش موفق شد.

بلورى از ايسلند

مسئلة ديگرى كه با آن درگير شدند و نيوتن و هويگنس هيج يك آنرا بودنل، مسئله سويدهى (پولاريزاسيون) نور بـود. در در سـال

 امتداد شعاع تابش نور دوران كند، يكى از از آن دو شعاع خر خروجى،
 مى خرخد. هويگنس اين پديده را با اين فرض توجيه كرد كه موج نورى كـه در اســـات

خداوند گفت ر(نيوتن بماند!،,
ديسلند (يا در هر بلور ديگر) وارد مىشود، به دو موج تجزيه مىگرددر: يكى موجى كه با

 است. موجكهاى كروى جبههاى موجى مىدهند كه در همين امتداد جبهئ تابش اتصـالى است؛ در حالى كه مو جكهاى بيضى شكل موجب مى شوند كه جبهةء موجى ريوسته به كنار
 خارج شد، فقط إمواج كروى در هوا تشكيل مىيابند، و دو ير تو با هم موازى مىشوبند. با
 نورى در بلور به دو شيوهٔ مختلف انتشار مىيابند. دليل آن اين بود كـه او عـقيده داشت
 در مورد صوت جنين است كه در آن مورد اگر بلور را حول امـتداد پـرتو تـابش دوران
 نداشت، در جست و جوى اين بود كه اين بديده را (كه به انكسار مضاعف معروف است) با اين فرض توضيح دهد كه ذرات تشكيل دهندهُ اشعهٔ نامعمولى در جهات مختلف عمود بر امتداد شعاع هستند. وى در هاپ دو دم كتاب نور شناخت خورد، تفاوت ميان دو شعاع رابا تفاوت ميان دو ميلَ درازى مقايسه كرد كه مقطع يكى دايره و و مقطع ديگرى مري مربع مستطيل

 هستند كه انكسار نامعمولى به آنها بستگى دارد، و نيز دارایى دو يهلوى مخالف ديگر دير است كه اين خاصيت را ندارند."

نيوتن بوضوح تصور اين را مىكرد كه اشعئ نور بايد بعضى خواص اص عرا
 باشد.

 درآمد. بدون شكك نور جيزى نيست جز انتشار موجى در فضـا المـا الما ارتعـاشات مـحيط،

 مى گذرد، در صورتى كه در حالت دوم عمود بر آن سطح است.

 باشد، كه در مقابل ثارگى و خميدگى مقاومت مىكنـند. منظور اين است كه اتر جهـانى،

خداوند گفت رنيوتن بماند!، ه
يعنى حامل فرخى نور، كاز بسيار رقيقى نبود كه هويگنس تصور كرده بود، بلكه جسمى
 سماوى، بدون آن كه عملاً با مقاومتى مواجه شوند، در آن حركت كنند؟ و حـتى اگـر فرض شود كه اتر جهانى مادهٔ جامدى است بسيار سبك و متحركى، مانند حسبى كه امروزه

 افكند.

افول نيوتن
در • ه سالگى، نيوتن تصميم بر اين گرفت كه زندگى دانشگامى را ترك كـر كند و در

(1-7 سرگذشت فيزيك
زندگیش (در سال IVYV در سن ^ه سالگَى از دنيا رفت) عارى از هرگونه كشف مهمى بود كه از سن كه علت اين امر ضعف و ناتوانى و كهولت بود، و بعضى ديگر مىگويند علتش اين بود كه وى تمام نظريههاى ممكن را، كه مىتوانست در زمان خودش به وجو وانو آيد، بيان كرده بود. در هر حال، به اندازه كافى كار انجام داد!

حرارت همچجون انرڤى

براى نخستين بار، مطالعات مربوط به پديدهٔ حرارت توسط مرد غارنشين مـا قـبل تـاريخ

 (اسردا) براى انسان ذاتى است، به مانند هر موجود زنده ديگرى، و دماى محيط مجاور را
 دما اغلب گمراه كنده است، و كسى كه جشمش بسته است نمى توانو باند بگويد كه آيا دستش
 دو حالت احساسى بديد مى آيد، زيرا هر دو عيناً ياسخ فيزيولوزيكى به آسيبى هستند كه به

دماسنجها

 گاليله بود كه در آن فقط سرد و گرم شدن از از روى انی انقباض و و انبساط آب ثبت مى شـد

 تكامل يافت، و حال آنكه ميان كشف امواج الكترو مغناطيسى و ساختن نخستين تلگراف بيسيم، يا ميان كشف شكافت اورانيوم و نخستين بمب اتمى حند سالى بيشتر طول نكشيد.

قوانين گازها

همان وقت كه نيوتن در كيمبريج دربارهٔ نور و جاذبه مىانديشيد، يك نفر انگليسى ديگر، به نام رابرت بويل 「، در آكسـفرد سـرگرم مطـالعه در بـاب خـواص مكـانيكى و تراكمپذيرى هوا و ساير گازها بود. بويل، كه خبر اختراع گلولهُ سربى اوتو فون گريكهّ

 كشارى كه بر آن كاز وارد مى شود، بهطور معكوس، متناسب است با فشارى كه برآن كاز وارد مىشود. (شكل ا -
 قانون مهم ديگرى بيداكرد كه بيان آن اين است: فشار هر كاز محتوى در حجم معين، بها بها ازاى هر يك درجئ سانتيعراد افزايش دمائ، به اندازه
 از اين رو اغلب آنرا (قانون شارل، مىنامند.

دماسنج گازى و دماى مطلق

اين دو قانون، سادگى ساختمان گازها را مشخص مى سازد، زيرا كه تراكـمیِيرى و

 است كه (ادمانماى)" گاليله را از هر وسيلهُ ديگرى كه يس از آن ساخته شده معقولتر كرده
2) Boyle
3) Guericke
4) Gay - Lussac
5) Charles

نمايش نمودارى قانون بويل دربارة تناسب معكوس حجم گاز و نشار آن.
است. مايعات مختلفى جون آب، الكل، جيوه، و غيره (همحچنين جامداتى نيز كه مى توانند در ساختن دماسنجها به كار روند) تا اندازهاى به شيوههاى مختلف بر اثر افزايش دما انساط مى يابند؛ حتى آب به جاى آنكه هنگام افزايش دما از نثططة انجماد تا جند درجه بالایى آن منبسط شود، انقباض بيدا مىكند، از اين رو اگر دو دماسنج با دو مايع مختلف بسازند و بر آنها مواضع ستون مايع را در دو دماى مختلف (مثلاً نقطةُ انجماد و نقطه جوش آب) نشان رو كنند و فاصلءٔ ميان اين دو موضع را به قسمتهاى مساوى قسـمت كـنند (ْ ه . . ا در مـورد مقياس صد بخشى)، اين دو دماسنج تا اندازهاى مقادير مختلف را ميان دو نـقطةٔ انتهـايى نشان خواهد داد. از طرف ديگر جون همهٔ گازها وقتى كه گرم شوند درست به يك نـ نحو
 به مانند گاليله، نيازى به مشخص كردن اينكه آيا گاز هواى معمولى است يا ئيدروزن يـا يـا
 شده، بيشتر بر اساس اندازه گیرى فشار است تا اندازه گيرى حجم گاز گرم شـر شده. بتدريج كه
 مى راند. لولهُ سمت راست را حندان بالا مىبرند تا گاز به حجم اول خود برسد، و دما را از

حرارت همجون انرزَ ○ 11 O

اساس دماسنج گازى. هرچه دماى مايع درون ظرف سمت چپ بالاتر باشد ارتفاع h جيوه در دو لولئ متحركت سمت راست بايد بيشتر باششد نا آنكه سطع جيوه در لوله وسطى در همان جايى كه با سهم نشان داده شـده باقى بماند.

F-r
 كاز صفر مىشود.

شده عرگز تا به نقطهاى كه از لحاظ رياضى حجمش صفر است نمىرسند و، اندكى بيش از رسيدن به صفر مطلق، به حالت مايعاتى درمى آيند كه نمى توانند متراكمتر شوند. با همه اينها صشر مطلت، يعنى دمايى كه در آن دما حجم گَاز، وقتى كـه حـجم مولكولهـاى آن بِنهايت كوجّك مىشود و ديگر نيروهاى جاذبهاى ميان مولكولها وجود ندارد، بـه يكـ نقطهُ رياضى تبديل مىشود، نقش بسيار مهمى در فيزيكك حرارتى ايفا مـىكند. (هـر دو شرط دز مورد (اگازهاى كمياب)" مانند هليوم، نئون، آرگون، و غيره بسيـار نـزديكك بـه

با آنكه مردم از زمانهاى بسيار گذشته درباره حرارت سخن گفتهاند، نخستين كسى كه از آن به عنوان مو جوديتى فيز يكى سخن گفته است كه مقدار آنرا درست مشل مقدار
 بلكى ^. باشد كه هم به فيز يكك علاقه داشت و هم به شيمى. وى، حرارت را هم اهحون سيال محسر ساً بیوزنى به نام („كالور) تصور كرد كه مىتواند در همةٔ اجسام مادى نفوذ كند و

8) Black

حرارت هصچون انرثّى O IT IT
آنها را بالا بيرد. وقتى كه يك ليتر آب جوش را با يك ليتر آب سرد يخ مخلوط كرد، متوجه شد كه دماى مخلوط بهدست آمده درست ميان دو دماى اولى اوليه است؛ و اين
 دو قسمت توزيع شده است. وى واحد حرارت را همحون مقدارى تعريف كرد كه براء براى

 دما گرم شوند، محتوى مقادير مختلفى (اكالور) هستند زلزيرا بديهى است كه به دما دماى اوليهٔ آب خيلى نزديكتر است تا به دماى اولئ جيوه. در نتيجه وى خنين استدلال كري كرد كه اگر اكر

 سستتر مىكند و آنرا به حالت بخار در مى آورد.

9) Calor
11) Carnot
. علامت فارنهايت است. F (. .
)

○ / \bigcirc
يكك چرخ آبى مقايسه كرد كه در آن بهوسيلهُ ريـزش آب از يكك سـطح بـالا صـورت
 كار انجام يافته تو سط مقدار معينى آب به نسبت اختلاف ار تفاع ميان سطوح آب بالاى
 بخار توليد شود متناسب است با الختلاف دماى ميان ديگى كه در آن بخار توليد مى شود و
 آبى، مقدار حرارتى كه در سردكن مى آيد برابر است با مقدار حرارتى كه از ديگك ديگر گرفته مىشود، و كار مكانيكى به اين علت انجام مىگيرد كه مقدار معينى حرارت از از ناحئ
 است و ماشينهاى بخار قسمتى از حرارتى راكه در آنها جارى مىشود به انرزیى مكانيكى انى تبديل مىكنند، و مقدار حرارتى كه به سردكن مىرود كمتر است از مقدار حرارتى كه به اين ترتيب به انر زى مكانيكى تبديل مىشود.

لودوبگت بولزمان (سمت چپ)، سادى كارنو (رسط)، و جوسايا گيبز (سمت راست) بنيانگذاران نظريئ جديد حرارت.

حرارت حركت است

اين فكر كه حرارت نوعى حركت درونى يك جسم مادى است و، چجنانكه بلك و

 امريكا تولد يافت، و در دوران جوانى خود در جنگگهاى انقلابى ايالات متحد شركت درك درد.

 شيميايى بىشباهت نيست و به يخ مى بيوندد تا آب توليد كند (آب = = حرارت + يـخر)، موافق نبود، يا آنكه در انواع مختلف فرايندهاى

 كه وزن سيال حرارتى راكه مىگريزد بيدا كند؛ ولى به نتيجهاى منفى رسيد.

 داشته باشد. اكنون مىدانيم كه هر شكلى از انرزیى، جرم محسوساً آنى وزينى دارد كهـ بنا بـا بـر رابطهُ معروف اينشتين از تقسيم كردن آن بر مجذور سرعت نور بـهدست مــي آيد. وزن
 دقت هرگونه اندازه گيرى است. همة اين مشاهدات، ورى را با به اين نتيجه رساند كه حرارت

 لولة توب]، در ضمن نمايان شدن حرارت، يعنى حركت، بيوسته به قطعهٔ فلز داده مى شود.ر.)

برابرى مكانيكى حرارت

نظريهماى كنت رامفرد حجند دهها بعد توسط فيزيكدان آلمانى، جـوليوس روبرت
 ماير آزمايشى در يك كارخانئ كاغذسازى ترتيب داد كه در در آنجا مغز چجوب محتوى در

 اينها جون وى زياد گرفتار كارهاى بزشكى بو بود، اين كار را با انجام آزمايشهاى دقيقيترى
 انگگليسى به نام جيمز يرسكت جول إ برد كه اجمالا در (شكل هـ - \&) نشان داده شده است و تشكيل مى اند از ظرفى ير از آب

I Y Y O حرارت همجون انرزى

آزماشش جول درباره نبديل انزظى بكانبكى به حرارت. وزنهاى كه سقوط مىكند پرهها را در ظرف پر از آب مى چرخاند و دما، بر
 مكانيكى حرارت را بهدست آررد.

 مى ميافت. از زوى مقدار آب ظرف و اندازه گيرى افزايش دما جار جول توانست مقدار كـلـ
 سقوط آن كار مكانيكى را بددست مىدهد. با جند بار تكرار اين آزمـايش در اوضـاع ور و ور احوال مختلف، جول محقق داشت كه يك نسبت مستقيم ميان كار انجام يانته و حرارت توليد شده وجود دارد. با اعلام نتيجهٔ مطالعاتش در سال 1AFY، وى جنين نوشته است:

فارنهايت بالا خواهد برد.1) اين رقمى است كه، با اين واحد يا با واحدهاى ديگر، اكنون در همهجا براى تبديل انزرُى حرارتى به انرزُى مكانيكى به كار مىروود.

ترموديناميك

وقتى كه برابرى حرارت با انزرزى مكانيكى، كه اكنون قـانون اول ترمو دينـاميكـ

 كارنو اين موضوع را محقق كرده بود، توليد كار مكانيكى توا توأم است با (اافت)، مقدار معينى

 ترمو ديناميك بيان مىكند كه مقدارى از آن از ميان مـىرود و و مـقدارى معـادل آن آن بـه

حرارت همجون انززى 119 ح

تشابهى مبان يكت ماثين حرارتى كه تسمتى از حررات را به انرزَى مكانيكى تبديل مىكند كه از ناحبه دمـاى بـالا بـ نـاحئ دماى پایین جريان مى بابد.
مىرود. واضح است كه نمىتوان تمام آب نهر را بهوسيلةٌ تلمبه بالا فرستاد، زيرا آن وقت

 بهترين كار اين است كه ترتيبى دهيم تا مقدار آب باقيمانده در نهر درست كافى باشد براى

○ \bigcirc سرگذشت فيزيك
بالا فرستادن بقيهُ آن به خانه. اگر مثلاًا ارتفاع آببند يكك متر و ارتفاع خانه F متر بالاى
تهب باشد، خواهيم داشت:

$$
f X=(1-X)
$$

(قسمتى از آب است كه به خانه مىرسد). از اين رابطه نتيجه مىشود كه:

$$
x=\frac{1}{f+1}=\frac{1}{\Delta}
$$

در نتيجه، با چجنين ترتيبى بيش از يك رنجم آب نمى تواند با تلمبه به خانه فرستاده

 از حرارت كه مىتواند به كار تبديل شود با عبارت زير بيان مىشود:

$$
\frac{T_{1}-T_{Y}}{T_{1}}
$$

كه در آن TY و TY به ترتيب دماهاى مطلق ديگُ بخار و سردكن هستند. دماى آب جوش

 است. در واقع سوددهى ماشين بخار، به علت هدر رفتن گرما و به دلايل عـملى ديگـرك، از اين مقدار هم كمتر است. اين بيان كه محال است حرارت را به انرثى مكانيكى تبديل كرد بدون آنكـه حــرارت بيشترى وجود داشته باشدكه از يك جاى جرمتر به يك جاى سرد سردتر رسقوط كنده، ابه (رقانون دوم ترموديناميك"، معروف است. اين بيان معادل است با اينكه حرارت بهخودى خود از جانى

 خودبهخود به بالاى تههاى روان شود و از آنجا در آسيابى بريزد در مبحث رياضى ترموديناميك، مفهوم (انتروبى") وارد مىشود كه معمولاً آبا با حرف
| حرارت هبجون انزرى ○
نشان داده شده است و آن مقدار حرارتى است كه جسم مىگيرد يـا از دست مـــددهد
 ترموديناميك را، كه در بالا آمده است، چخنين بيان كرد: انترويى هر „دستكاه مجزاه (يعنى
 افزاسش يابد يا ثابت بماند. اگر يك
 البته اگر Tr دماى آب گرم و Tr دماى يخ باشد، بهطورى كـه
 شود. مقدار حرارتى كه يخ مى يرد Q Q + و تـغيير انـترويى Q حرارتى كه آب مى Tن آن

$$
\Delta S_{1}+\Delta S=\frac{Q}{T_{1}}-\frac{Q}{T_{r}}=Q\left(\frac{1}{T_{1}}-\frac{Q}{T_{r}}\right)
$$

است، نتيجه مىشود كه $T_{1}>T_{r}$ البته اين استدلال فقط در مورد دستگاههاى (|مجزا) به كار مىرود؛ يعنى دستگاههايى كه هيجّ انرزيى از خارج به آنها داده نمى شود.
 سوددهى ماشين حرارتى را نتيجه بغيريم؛ همان بيانى كه در صفحهٔ

 اندازء́ مى يابد. حون افزايش انترويى در سردكن بايد بيشتر يــا دستكــم مسـاوى نقصـان آن در ديگك بخار باشد، ممكن است بنويسيم:

$$
\frac{Q_{1}}{T_{1}}<\frac{Q_{r}}{T_{r}}
$$

$$
\begin{aligned}
& \frac{Q_{1}}{Q_{r}}<\frac{T_{1}}{T_{r}}<\frac{Q_{r}}{Q_{1}}>\frac{T_{r}}{T_{r}} \\
& \text { و به آسانى به صورت زير درمى } \\
& \frac{Q_{1}-Q_{r}}{Q_{1}}<\frac{T_{1}-T_{r}}{T_{r}} \\
& \text { همان فرمولى كه قبلاً ذكر شد. }
\end{aligned}
$$

يك اسباببازى زإبنى، بر اساس ماشين بخار، به طرز زيركانهاى ساخته شده است.

 در دماى معمولى بسرعت تبخير مى ششود. بخار اترى كه در آغاز كار تمام كرهة زيرين رين را ير ير

 مرغ خم مىشود، نوكش در آب فرو مىرود و، به اين ترتيب، سرش بيوسته سرد بـياقى مىماند.
اگر شيشه را به جاى آب از الكل خالص كه بهتر است ير كنيم سرد شدن كرئ بر بالايى

 يك روز معمولى تابستان در واشنگتن آنرا به كار بيندازد.

حرارت هیجون انزرّى O
در مورد اين اسباببازى، كه بر اساس تبخير آب كار مىكند، سئوال جالبى ممكن

است يسش آيد. اگر نوعى سازوكار چرخ و دندهاى را به محورى متصل كنيم كه حول آن

 مكانيكى است. اين رقم بايد مقدار گرمايى را نشان دهد

 انرزی مكانيكى
 را مثلاً T T - Tr Tr

○

 آب تبخير شده از سر مرغ كارى مكانيكى عايد مى شود كه مى تواند يك يك
 تبخير شده را بگيرد. البته، اين محاسبات بسيار تقريبى است و انرزيهاى ميختلف از از ما ميـان

ماشينهايع با حركت دائمى از نوع اول و دوم

به كار رود، هنين ماشينى كار نخواهد كرد.
از آنجا كه ماشينى با حركت دائمى از نوع اول با قانون اول ترمودينـاميكـ، يــينى

 آب دريا را تلمبه كشى كتند، از آن برایى جرخاني

 بريزند، مىتوانستند

ITA O حرارت مهجون انرfى
اما قانون دوم ترموديناميك، يعنى قانون انتروبى هميشه رو به افزايش، هيج يك از اين امكانات شگفت را مجاز نمىداند.

استدلال ترموديناميكى

 يديدههاى فيزيكى و اثبات بسيارى از احكام مربوط به آنها به كار بنديم. مثلاًا ظر آرفى را در

 شيشهاى مى يوشانيم و هواى آنرا خارج مى كينيم.

 همين امر موجب برقرارى جريان آبى رو به بالا در لولهّ مويِن مـىشود، و ايـن حـركت

 اندازيم. جون اين قانون نبايد نقض شوده نتيجه میى

 است)، نتيجه مى گيريم كه فشار بخار بالاى سطح محدب يكت مايع زيادتر از فشار بخار در

 مى توانيم فرمولى برای بستگى فشار بخار با انحناى سطح آب بهدست بياوريم. اگیر ايـن

ITY O حرارت مصجون انرزٔى
فرمول درست نباشد، آب دائماً در لولّ مويين جريان خواهد داشت و ما ماشينى با حركت دائمى از نوع دوم خواهيم داشت. نتيجه گيرى نوق مفهوم مهمى در دركك بديدهُ بارش دارد. ابرهايى كه در آسمـان

 محدب بيش از فشار در بالاى سطوح تخت است و اختلاف فشار با نقصان شعـاع انـحنا

 شدكه در هوا شناور بمانند و بر سر ما يا بر روى هتر ما فا فرو خواهند ريختـ.

نظريهُ حركت (سينتيك) حرارت

بيشتر بررسيهاى تكميلى بعدى نظرية حرارت و ارتباط. قانون اساسى ترموديناميك با

 ذره مجزا را بدقت بيروى كنيم. آنهه براى ما لازم است، دانستن رفتار متوسط مولكولها

 شركتهاى بيمه، موسسات دولتى كه با توليد مواد غذايى بهاوسيلّ كشاوراوزان سران سروكار دار دارندا و غيره خط مشى خود را بر اساس اطلاعات آمارى متكى مى مكنند، و توجهى به جزئئيات مرگگ عمر يا خصوصيات مربوط به روستاى زيد يا عمرو ندارند. با با درنظر گرفتن ايـنكه
 مولكولهاى موجود در Icc هوا . كه قوانين آمارى در مورد مولكولها بيشتر و بهتر صدق میى مكا مكند تا در مور مرد انسانها. آسانتر اين است كه ملاحظات آمارى در مورد كازها به كار رود

 مقدار گاز در ظرفى كه حجم آن نصف شد شده است است قرار گيرد. جوا جون در اير اين حالت تعداد
 ديوارة ظرف برمى خورند و باز مى جهند نيز دو برابر خواهد بود. در نتيجه، فشار گاز دو دو
 مىدهدكه رابرت بويل آنراكشف كرد.
 مولكولها دو نتيجه خواهد داشت: () تعلاد مولكولهايى كه در هر ثر ثانيه به سطح معينى از

 سرعت كه همان انرزى جنبشى است افزايش خـواهـــد يـافت. ديـــيم كـه، بنـابر قـانون

حرارت همجون انزرُى ○
شارل ـ گيلوساكک، فشار گازى كه در حجمى ثابت نگاه داشته شده متناسب با دماى مطلق
 مولكولهاست. با هر نوع مولكولى سروكار داشته باشيم هميشه جنين است، زيرا يكـى انـى از
 مورد مخلوطى از تعلاد بسيار زيادى از ذراتى مركب از دو يا جند جرم مختلف، انـرزى

 سرعتشان يكسان است. در دماى معمولى، يعنى حدود

مربوط است به سرعت كا البته انرزى حركت حرارتى، كه بهوسيلهُ دماى مطلق مشخص مى مشود، فقط مـقدار متوسطى است براى تعداد بسيار زيادى از مولكولها و، جنانكه در پديدهمهانى آمارى هميشه
 عمدهاى نشان دهد. بعضى از مولكولها، به علت اينكه تصادمات ميان آنها تصادفى است،
 حركت تعداد ديگرى ممكن است موقتاً كند شود. با با به كار بردن قواني

شكل F- 9 نشان داده شده است. يكك مفهوم ديگر در نظريةٔ استاتيكى گازها، امروزه مـفهوم (امسـير مـتوسط آزاده)

منخنى توزيع سرعتى مكــول

 ضربدر جذر تعداد گامها. در نتيجه، فرمول زير را راخواهيم داشت: تعداد گامها \times طول
درمورد مولكولهاى هوا، طول هر گام طام

حرارت همجون انرزی \mid |F|

 فرايندهاى حرارتى انترويى بايد هميشه افزايش يابد6 توضيح مىدهد؟ به هر حال، مفهوم انتروپی از لحاظ نظريه استـاتيكى حـركت مـولكولى چحـيست؟ جــرا هـــيشه حـرارت از اجسام گرمتر به اجسام سردتر روان مىشود، و چرا نمىتوانيم مـقدار مـعينى حـرارت را كاملاً به انرزى مكانيكى تبديل كنيم؛ حال Tآنكه در تبديل انرزیى مكانيكى به حـرارتـى مشكلى دركار نِست؟ ياسخ همةٔ اين پرسشها كاملاً طبيعى است اگر تصور كنيم كه در اين حالات چه بر سر مولكولها مىى آيل. ظرفى را درنظر بگیيريم كه به دو نيمه خنان تقسيم شده است كه حرارت ميان آنها مبادله نمىشود. نيمى را باگًاز داغى و نيمى ديگـر را بـاگـاز سردى پر كنيم و جدار بين دو ظرف را برداريم. چهه روى خواهد داد؟ ظاهراً مولكولهاى تندرو گاز داغ در تصادم با مولكولهاى كندرو وگًاز سرد انرزّى از دست مىدهند و اين فرايند تا جايى ادامه خواهد يافت كه توزيع يكنو اخت انرزى ميان همهٔ مولكولها بـرترار شود، يعنى تا وقتى كه تساوى دما در هر دو نيمةٔ ظرف حاصل شود. اين اوضاع و احوال مشابه است با حالت سطلى كه نيمةٔ تحتانى آن با مهرههاى سياه و نيمةٔ فوقانى آن با مهرههاى سفيد پر شده است. اگر سطل را تكان بلهيمَ مهرهها خنان با هم مخلوط خواهند شد كذ مهرههاى سفيد و سياه از پايين تا بالایى سطل يكنواخت توزيع شوند. آيا ممكن است بـا تكان دادن مجلد سطل، مهرهها از هم جدا شوند! از لحاظ نظرى، آرى. در واقع دليلى وجود ندارد كه يك چنين جدايى نتواند صورت گگرد؛ اما بسيار نامتحمل است كه چنين شود! ممكن است لازم شود كه سطل را قرنها يا شايد ميليونها سال تكان دهيم تا Tآنكـه فقط بر حسب تصادف محض، همهٔ مهرههاى سياه در ته سطل و مهرههاى سفيد روى آنها قرار گيرند. همين توضيع درباره́ مولكولهاى گاز وارد است. اصولاً ممكن. است كه نيمى از مولكولها، بر اثر تصادمهاى اتفاقى، به سرعتى كاملاٍ كمتر از سرعت متوسط برسند، و

○ \bigcirc سرگذشت فيزيك
حال آنكه نيمى ديگر سرعتشان به همان نسبت بيش از سرعت متوسط بشود. اما اين بسيار
نامتحمل است.
اوضاع و احوال مشابهى نيز، در مورد تبديل انرزى مكانيكى به حرارتى و و برعكس

 اين حركت منظم به حركت نامنظم ذرات مجزا تبديل مى وشود كه آشفتگى آتى حرارتى اتى اولئ

 است بسيار نامتحمل. بنابراين مىيينيم كه قانون انترويى رو به افزايش هيزى جز ايز اين بيـان

 است به افزايش احتمال نمونه حركت مولكولى. مى توان رابطءّ ميان احتمال يك طرح و نمونة معين از حركت مولكولى و انترويى را

 در دو فشار مختلف باشند، يا هر دو دستگاه مفصلتر ديگرى شامل مايرايعات و و بخارهاى آنها

 يكديگر داشتند. فرض كنيم كه مقدار معينى حرارت از خارج وارد دستگاه شود؛ بهطورى

حرارت همجون انزثى O Mr
 جدا جدا درنظر بگيريم، افزايشهاى انترويى از روابط
 خواهد بود. و حون

$$
\frac{\mathrm{QA}_{\mathrm{A}}+\mathrm{Q}_{\mathrm{B}}}{\mathrm{~T}}=\frac{\mathrm{Q}_{\mathrm{A}}}{\mathrm{~T}}+\frac{\mathrm{Q}_{\mathrm{B}}}{\mathrm{~T}}
$$

نتيجه مىگيريم كه انترويى يكت دستگاه مركب برابر است با مجموع انتروييهاى قسمتهاى
 مىماند؟ احتمال دستگاه مركب A و B نظرية برحسب احتمالات مربوط بـه هـر يكـ انـ از دستگاههاى A و B جدا جدا حگگونه بيان مى شود؟ بنابر نظرئّ رياضى احتمالات، احتمال
 از حاصلضرب احتمالاتى بهدست مى آيد كه مربوطند به هر حادثه مستقلى كه آن احتمال آمال

 احتمال سبزه بودن وى

شرط، هر سه، با هم وجود داشته باشد اين است:

$$
\frac{1}{r} \times \frac{1}{r} \times \frac{1}{\Delta \cdot}=\frac{1}{7 \ldots}
$$

يعنى يك در - . 7.
 انزوده شوند، احتمالات بايد در يكديگر ضرب شـي شوند. جه

O سركزشت نيزيك
بايد به نسبت لگاريتم احتمالات تغير كند و بايد بنويسيم:

$$
S=k \log P
$$

كه در آن K ضريبى است عددى بـ نه نام ضريب بولتزمان.

شيطانك مكسول
يكى از آدمكهاى خيالى بسيار مهم در فيزيك آمارى (شيطانكك مكسول، حـاصل

 مى شود و قانون دوم ترموديناميك را را نقض مى مكندي

حرارت هدجون انرزٔى ○ ITA

شيطانك مكسول به چالاكى مى تواند مولكولهاى تندرو و كندرو را از مم جدا سازد.
شرودينگر

 موجود انسانى، با مغز و عضلات و جيزه هاى ديگرش، نمى انور انواند فقط از جند اتم اتم سـاخته شده باشد؛ همانطور كد يكك مسجد بسيار بزرگك فقط با حند قطعه سنگك ساخته نشـــده

شيطانك مكسول و هر اسباب مكانيكى ديگرى كه جاى آنكار كند، بايد از تعداد
 عهده دارد، انجام دهد. هرجه تعداد ذرات كمتر باشد، آشفتگيهاى آمارى در رفتار آنها ور آنا

 اشتباه آمارى در برخورد با مولكولها خواهد كرد كه طرح كلى كاملاً بىنتيجه خواهد ماند.

حركت ميكروسكوپی حرارتى

ارقام بسيار بزرگت و بسيار كوجكى كه در بالا براى جهان مولكولى بيان شد، حاصل

 ديگر به اندازه كافى بزرگك هستند كه در ميكروسكوبى قوى دير ديده شوند.

 لحاظ تكامل و وضوح فقط با مكانيك نيوتنى مقايسه مىشورد.

IFY \bigcirc حرارت همجِون انرگّى

 عزيمت ددر اين حالت برابر است با طرل مر گام مستغته ضرب در جذر تعداد كامها.

حركت حرارتى و انتشار صوت
اين مطلب بخوبى دانسته شده است كه هوت جيزى نيست جز انتشار تراكم موجى در هوا و ديعر مواد. مطالعات تجربى واقعيت جالبى را آشكار ساخته است، و آن اينكه سرعت صوت بستگى به وزن مخصوص هوا ندارد و در هر جاى جو، چهه در كنار دريا و جه در قسمتهاى علياى جو، يكسان است. از طرف ديگر، اين سرعت بستگى به دماى هو دارد و مستقيماً متناسب است با جذر دماى مطلق. جگگونه اين واقعيتها را مى توان از لحاظ ساختمان مولكولى و حركت حرارتى توضيح داد؟

برای اين كار بايد به ياد آوريم كه هوا از مولكولهاى پر شمارى تشكيل يافته كه، با

 با ساير مولكولهايى كه دورتر قرار دارند (در طبقء هواى بعدى) اين حـركت را بـه آنـها

 مولكولهاى هوا بايد مسافت نسبتاً درازى (مسير آزاد) را بيمايند تا بـه مولكولهـاى طـبـة بعدى برخورد كنند، سرعت انتشار اساساً بهوسيلة سرعت حـرارتـى مولكولهـا مشـخص

 جذر دما افزايش مىيابد. و آنحه درباره سرعت مولكولها صــيا سرعت صوت هم صدق كند. وتتى كه سرعت شيئى كه تراكم را در گاز توليد مىكيند بر بر سرعت مولكولى در شرايط معين فزونى يابد، وضع كاما

 در اين حالت سرعت حرارتى مولكولى به آن اندازء كافى زياد نيست كه از تأثير (رانــهاه)

 بسيـار فـزونى يـافته، فشـار نسـبتاً زيـادى دارنـــد كـه مـوجب تأثـيرات مـخرب آنـهـا

حرارت همحون انرزٔى O 1 P9

تشكيل موج صو تى ير حالى كه ررانها كندتر از مولكولها حركت مىكند (الف)، و تشكيل امواج شوك (شوكهاى ساكن) وتىى كه (رانهعا، تندتر حركت مىكنند (ب)

 همين علت به (شوكك ساكن) موسوم است.

صدور نور بهوسيلة اجسام داغ

اين مطلب بخوبى دانسته شده است كه هر جسم مادى نورانى خواهد شد، وتى كـى كه

 مقياس كيهانى، خور شيد و ستارگان به اين علت نور صادر مىكند كـي كه سطح آنها بسيار داغ

 آشيزخانه در دمـاى º . . 7 تـا

درخشانى صادر مىكند كه، با اين حال، در مقايسه با نور قوس الكتريكى (كه در در دمار دماى ميان r r
 قبالً ذكر شد، بيشتر است. بنابراين بتدريج كه دما بالا مىروود، تابش صا بادره باره بسرعت شديد مى شود و طول موجهاى كو تاه آن افزايش مى يابد. (شكل

 موج بلند است و شدت در ناحيهٔ نور مرئى صفر و بهوسيلّ هاشور نشان داده شده است، در
| | | \mid حرارت مبجون انزfى

 صدور نور بهوسيلة اجسام داغ، تابع دو قانون مهم است كه در نيمئ دوم قرن نوزئدرئ

كثف شده است:

 جسم داغ متناسب است با توان حهارم دماى (مطلق) آن. بديهى است كـي

صدور نور بهوسيله گازهاى داغ

بحث دربارئ صدور نور بهوسيلهُ اجسام داغ، كه در قسمت بيس گفته شد؛ به حالتى آلى

 در شعله است. اگر احتراق كامل گاز انجام گیرد، جنانكه در يك مشان مشعل بـونز

 زرد رنگك مىشود. اگر اين نور را بهوسيلهُ منشورى، به شيوه قديمى نيوتن، تجزيه كنيم،

 در آمدهاند، خطوط ديگرى پديد مى آورند كه گاهى تك ور گامیى متعددند.

 اجسام جامد و مايع معمولى منراكم شدهاند و، در نتيجه، يكن طيف بيوسته صادر میى مكند.

حرارت همحون انرثى O
حرا گازهاى داغ نورى صادر مىكند كه منحصراً از طول موجهاى معين و م منتخبى

 نورى صادر مىكنند. يك آلت موسيقى، خواه يكك ديايازون ساده باشد يا يك يـيـانوى

الف) سوديوم‘ حجرن در يكت شعلٌ داغ وارد شود، خط زرد مشخصى صادر مىكند.
 جذبى در جايى نمايان مىشودكه در آنجا فبلا خط روشن صدورى وجود داشت.

○ سرگذشت فيزيك
آهنگك به صدا در مى آيند. اتمها و مولكولها نيز طول موجهاى نورى معينى صادر مىكنـند

 است كه در آن همه گونه آلات موسيقى يك اركستر سمفونيك را در درهم ريختهاند. اگر كيسه را تكانى بدهيم، صدايى خواهيم شنيد كه شامل همهٔ بسامدهاى قابل الاب شنيدن است است و هيج ربطى به خواص اختصاصى آلات موسيقى درون كيسه ندارد. به همين نحو اتما اتمهاى

 بهوسيلة بخار آن ماده بيداكنيم.

جنب نور

If
رنگچا بهو سيله يكك خط باريك تيره درست در جايى بريده شده است كه در آنجا خط زرد سوديوم بود. اين تأثير مربوط است به پلـيدهُ مهمى به نام همنوايى، كه در هر موردى كه در آن با نوعى ارتعاش سروكار داريم روى مىدهد. كو دكى را درنظر بگيريم كه بر روى تابى نشسته است و پدرش او را هل مىدهد. اگر پدرش تاب راه بهطور منظم، در فواصل زمانى مساوى و مساوى با دورهء تناوب ارتعاش تاب هل دهد، دامنة حركت رفته رفته بزرگتر مىشود و كودكك يا از تاب خوردن لذت مىبرد يا آنكه مىترسد. اما اگر جيز جالبى در آن حوالى تو جه یدر را آنحنان جلب كند كه در زمانهاى لازم تاب را هل ندهد6 هيع نتيجهاى از كوشش وى عايد نخواهد شد. گاهى هنگام دور شدن تاب آنزا به جلو مىراند كه سودمند نخواهد بود. گاهى هم، هنگامى كه تاب به سوى او مى آيد، آنرا به جلو مىراند كه اين هم به حركت تاب آسيب خوامــد رسـاند. بـراى افـزايش دامـنةء هـر ارتعاش، نيرو بايد با دورهُ تناوبى برابر دورهُ تناوب جسم ارتعاش كننده وارد شود. هرگاه دو ديایازون مشابه را نزديك هم بحگذاريم و يكى از آنها را بهوسيلة چحكشى به ارتعـاش درآوريم6 امواج صوتى كه از آن خارج مىشود6 پس از مدت كو تاهى، دياپيازون ديگر را به حركت در مى آورد. اما، اگر دو دياپازون دورههای تناوب متفاوتى داشته باشند، هيع اتفاقى روى نخواهد داد. به همين نحو براى تنظيم يكى گيرندهٔ راديو يا دستگاه تلويزيون بر روى ايستگاه دلخو اهو كليدى را مى خرخانند تا بسامد ارتعاشى دستگاه گیرنده برابر شود با بسامد دستگاه فرستنده.
آزمايش مربوط به شعلة́ سوديومدار نيز6 از همين نوع است. اتمهاى سوديوم باطول موج مخصوحى در طيف بيوسته قوس الكتريكى به حـالت هــمنوايـى در مـى آيند كـه خودشان بتوانند آنرا نشرك و اين امواج را در همهٔ امتلادها خراكنده كنند. در نتيجه، پرتو اصلى را ضعيف مىسازند. البته، خطط جذبى سياه در اين حالت، كاملا ً سياه نيست. درواقع اين خطط ممكن است حتى از خط نشرى اصلى روشنتر هـم بــشد، امـا نسـبت بـه ديگـر قسمتهاى طيف يِوستهٔ قوس الكتريكى بسيار تاريكك مىنمايد. اين قانون راكه هر جسـم همان تشعشاتى را جذب مىكند كه خود مىتواند صادر كند، فيزيكدان آلمانى، گوستاو

 استعمال آن، در مطالعه تركيب شيميايى خورشيد و ديگر ستارگان است.

 خيلى بهترى تكرار مىكرد، متعجب شد وتتى كه ديد رنگهاى رنگیين كمان بهو رسيلّ تعداد
 آسانى بر اساس آنحָه سابقاً در اين فصل گفته شد، دركك كرد. قبار آلاً بيان كرديم كه بيكر

 شده، و در آن قسمت مرئى (a) و قسمت فوق بنفش (e) با وسايل مدرن بهدست آمــده
27) Kirchhoff

29) chromosphere

عصر برق

كشفيات اوليه

جنانجه در فصل اول بيان كـرديمَ بديدهمـاى بـرقى و مغنـاطيسى را يونـانيان بـاستان و
 كه نخستين مطالعات منظم دربارة اين بديدهما به عهده گرفته شد. سر ويليليام گـيلبرت'،

 مدارى آنها بر گرد خورشيد نگاه مىدارند بتوانند به عنوان نتيجهٔ جاذبّهُ مغناطيسى توضيح
 ساخت، و ميدان مغناطيسى اطراف آنها را بهوسيلهُ عقربهاهاى مغناطيسى كو جكى كـه در

1) Gilbert
2) De Magnete
3) Magnetite

مواضع مختلف و به فواصل متفاوت در حول كرهما قرار داده بود مطالعه كرد. وى دريافت كه در يكى از نقاط كره يكك جاذبهُ ماكزيموم نسبت به انتهاى عقربهٔ مغناطيسى و، در در نقطة
 سطح كره، عقربئ مغناطيسى هميشه در وضع مشخصى بر روى دايرهٔ وسيعى قرار مى رگيرد

 مغناطيس ندارند، توضيح داد.

 نمى توانستند بهوسيلّ دو دسته اسب از يكديگر جدر جدا شوند)، سعى كرد كه جه جاذبئ ميان دو

 مى منند. همجنين دريافت كه يك بار الكتريكى را مى توان از جسمى به جسم ديگر نه فقط

149 عصر برت

بهوسيلهُ تماس مستقيه، بلكه بهوسيلةٌ يك ريسمان نازكك مرطوب يا يك رشته سيم فلزى آنى كه ميان آنها كشيده شده است انتقال داد. مطالعات بعدى، كه توسط دوفى در آغاز قرن هجدهم دربارهٔ پديدههاى الكتريكى صورت گرفت، به اين نتيجه منجر شد كه دو دو نـوع
 مالش يافته توليد مى ودو، و الكتريسيتهاى كه بهوسيلة مالش دادن اجسام شيشهاى مثل خورا خرد شيشه و ميكا بديد مى آيد. اين دو نوع سيال الكتريكى را ارززينى) و (اشيشهایى، ناميدند و
 ناهمنوع يكديگر را مىربايند. فرض بر اين بود كه اجسام خـنتى (از لحـاظ الكـتريكى)

 يديدهها، كه نخست بهوسيلة اوتوفون گريكه مشاهده شد، مربوط به عمل متقابل اين دو
 دارای الكتريسيتهٔ رزينى شود. آنگاه اگر خنتى راكه در آن هر دو نو نو الكي الكتريسيته مساويند

 بار الكتريكى شيشهاى بزرگتر خواهد بود از نيروى دافعئ بار الكتريكى رزينى؛ و و نـتيجهٔ

 نتيجه اجسام هميشه بهوسيله اجسام باردار جذب خواهي

 مىشوند، و جون از جسم باردار دور شوند يكديگر را دفع خواهند كرد.

در همان هنگامى كه اين مطـالعات اوليه دربـاره بديدهمهـاى الكـتريكى صـورت مىیرفت، وسيلة الككريكى بسيار مهم ساخته شد. يك بر برتنماى برگیى و يك بر بطرى ليد.

$101 \bigcirc$ عصر برة
بطرى را به زمين و ورقئ درونى را به يك جسم باردار، يا بر عكس، وصـل مـى وكردند،

 ميكاست. حنين خاز نهايى، كه مى توانند مقدار بسيار زيادى الكتريسيته ذخيره كنند، در همئ

 خازنهاست كه مىتواند تا يكك ميليون ولت بار الكتريكى يـدا كند. وقتى كـه خـا واز نها در
 توليد مىكردند كه در هنگام اصابت با اتمهاى ليتوم، هدفى كه در در يكى انـى از دو انتهاى لوله قرار داده شده بود، آنها را دو ياره مىيكردند.

 است، عضويت مجمع پادشاهى لندن و آكادمى علوم پاريس را نصيب وى ساخت. وى به

همانإندازه كه در مبارزهجويى با زئوس توفيق يافت، در تفسير و تعبير نظرى پديدههاى الكتريكى نيز با وارد كردن فقط فرضئه يك سيال الكتريكى موفق شد. وى اين فرضيه

 با بار مثبت ناميل. حال آنكه جسمى با كمبود الكتريسيته را (مثل ميله لاكى مالش يـانته)،

 اين تغير در اصطلاحگڭذارى اصلاًّ كمكى نخواهد كرد.

قانون نير وهاى الكتر يكى و مغناطيسى

در طى نيمئ دوم قرن هجدهم، فيزيكدانان در بسيارى از كشور ها سر سرگّ مرم مطالعات

 هرگاه يكى از دو كره بار الكتريكى يداكند و يكت كرهٔ باردار الكتريكى در مجاورت آن

ترازوى بِیشش كولن

سرگذشت فيزيك $\bigcirc 1 \Delta{ }^{\circ}$
قرار گيرد، نيروى الكتريكى وارد بر كزئ حركت پذير موجب خواهد شد كه ميله در حول
 نخ بسيار نازكك است، اندكك نيروى وارد بر كره انحران قابل ملاحظهاى نساى نسبت به موض اوليهاش در ميله توليد خواهد كرد و زاويةٔ دوران متناسب است با نيرو. كولن به كره ثابت وكرئ حركت پذير بارهاى الكتريكى متفاوتى داد و فاصلةُ ميان آنها را تغير داد، و قانونى

 (شكل ـ ـ ه). با استفاده از اين قانون مىتوان واحد بار الكتريسيتهُ ساكن را به عنوان بارى Icm تعريف كرد كه با نيروى مساوى با يكك دين بر بار الكتريكى برابر خودش، به فاصله الها

 آويختن مغناطيسى به نخ و قرار دادن مغناطيسى بهطور قائم از بالاى جعبه، كولن ثابت كري رد كه همين قانون در مورد عمل متقابل مغناطيسى نيز صدق مـى مند. بنـابرايـن يكك واحـد مغناطيسگرى، به عنوان شدت مغناطيسى تعريف مى شود كه قطبى هم شدت خـر خود راكه در در

 خصوصى در خانها خويش صرف انجام دادن آزمـايشهاى فـيزيكى و شيميـايـى مـىـيكرد.
 سلطنتى، براى اطلاع از كار ديگر دانشمندان فيزيك و و شيمى قطع مى شد. در طى دوران
13) Cavendish

100 \bigcirc

زندگى طولانيش (در سن V9 سالگى مرد)، جز مشتى يادداشتهاى نسبتاً مهم هيزى منتشر نكرد. اما پس از مرگش، حدر حدود يك ميليون ليره در حساب بانكش موجود برد بود و و بـيست دسته يادداشت در آزمايشگامش. اين يادداشتها مدت درازى نزد رير خريشاوندانش باقى ماند.

 بسيار ضعيف ميان اجسام كوجك بها كار برد، و و بر اساس اين آزمايشها، مقدار صصحيح جري جرم
 آزمايشگاه كونديش در كيمبريج يكى از مدرنترين مراكز مطالعات علمى است.

ضربتى از يكك مارماهى برقى

بوميان افريقا و امريكاى جنوبى، از مدتها يشش با ماهى مخصوصى در آب شـيرين

 بررسى آنهاكردند، و چجين دريافتد كه اين تكان فقط در صور تى است كه دست دست با سر و

 جلب كرد؛ يز شكى كه يديدهٔ انقباض عضلانى ساقهاى تورباغه را، كه غذایى مطبوعى در
 شده است)، متوجه شد ساقهاى تورباغهاى كه به عنوان غذا برايش آورده بودند آر و و از از نرده آهنى بالكون خانهاش به قلابهايى مسى آويخته بودند، به محض

 جنگال بشدت منقبض مى شد، و گالوانى اطمينان بيداكرد كه اين پديده مشابه اسر است با تكان الكتريكى حاصل از مارماهى برقى. با همة اينها، گالوانى در مورد اين فرضيه اشتباه مىكردد،

عصر برق OY
و دوست وى آلساندرو ولتا¹'، فيزيكدان ايتاليايى، ثابت كرد كه جريان برقى كه موجب

 گَارد و، با استفاده از مقدارى صفحات مسين و آهنين كه متناوباً بر روى يكديگر گذاشت

 اضافى m زير بكى از آنها ترار مىگيرد به حركت درمى آبند.

و ميان آنها پارجهُ نمكدارى به محلول نمك قرار داد، جيزى را ساخت كه به نام (پيل ولتا)
 و در بسيارى وسايل ديگر به كار مىرود. ولتا، در ماه مارس •1^^، كتابى راكه شا شـا
 مركز تبادل افكار و نظريههاى علمى بود. وى در اين اين كتاب مىیگويد:

 مجموعهاى از آنها، به تناوب، قرار داده شده است. اين، همهٔ هيزهايى استى است كه دستگاه
 همان تكانها را توليد مىكند. و براستى كه تأثيرشان خيلى كمتر از تأثير بـاتريهاي مانيا مزبور

 اينها، محاسن و قدرتش خيلى بيش از قدرت همانباتريهاست؛ بهطورى كه احه احتياجى نيست

 بهطور مشروحترى براى شما توصيف مىكنم، و همينطور جالبترين آزمايشهاى مربوط بـ بـ
آنرا شرح مىدهم.

شكل اصلى بيل، كه توسط خود ولتا ترسيم شده، در (شكل ه - ها نشان داده شده است.

عصر برن O 109

یس از آن، حادثءٔ تاسفانگيزى روى داد. آقاى نيكولسن ^^، كه مسئول انتشـارات
 نتايج آنها رابه نام خود منتشر كرد. اما اين نيرنگك مؤثر ثر نيفتاد. نتايج بررسيهاى ولتا از منا منابع
 و امروزه بيل ولتا و ولت، واحد جتانسيل برقى، نام دانشمند شهير و با ذوق ايتا باليايى را با ياد

$$
\begin{aligned}
& \text { ش - } \\
& \text { يِل ولتا }
\end{aligned}
$$

سبس، با آن تماس داده مىشود. به علت دافعءّ كولن، كه ميان دو كره وجود دارده، بـراى تماس دادن دو كره با هم بايد مقدار معينى كار انجام داده كاري كارى كه بايد بايد انجام گيرد تا بار بار

اندازهگيرى مىشود.
برقاطيس (الكترومغناطيس)
با Tنكه نخستين بررسيها درباره بديدهماى برقى و مغناطيسى بايد اين را نشـان داده

 آن بديءٔ نامتعارفى را كه كشف كرده بود، بررسى كند. نخست هخين انديشيد كه حركت

171 عصر برن

$$
\text { شكل } 1 \text { - }
$$

كثف متفابل بك جريان برق و يكت منناطبس توسط اورسند.

 مى شده است. وى، تمام واقعيتها و مشاهدات مربوط به اين كشف را نوشت و و برای نشر به
 يادداشت زير كه مربوط به ناشران آن بود انتشار يافت:

خو انندگان سالناهه بايد متوجه شده باشند كه ما براى اعلام كثففيات شكفت جندان

 آنقدر توضيحات مشروح به همراه دارد كه ديغر جاى هيج اشتباهى باقى نگذاشته استه است.

 به جريان برقى كه درون اجسام مغناطيسى جارى است. وى جینين تصور كرد كه هر هريكى از از مولكولهاى مواد مغناطيسى، در درون خود جرئى جريانى مستدير هستند و، از از اين رو؛ بـ به يك
 برقى مولكولى، جداگانه، به هر سو متوجه مى شود و حاصل تا تأثيرات مجموع ع آنها صفر

 بهوسيلة فيزيك مدرن تأيد شده است كه خواص مغيناطيسى اتيا اتمها و مولكولها را وابسته به
 آمير نخستين كسى بود كه با صراحت ايـن فكـر را بيـان كـرد كـه جريـان بـرق حـركت

عصر برق ○

الكتريسيته در طول سيم است، از اين رو واحد جريان برق به نام وى ناميده شـده است. يك آمير جريانى است كه يك كولن الكتريسيته را در ثانيه از مقطع سيمى مى گذذراند. آمير، در عين آنكه كارهاى بزرگگ علمى را با با موفقيت انجام مىداداد، نمونهٔ بـارزى

 نوشتن فرمولهاى رياضى برروى آن. بعد از به حركت در درآم آمدن درشكه، اور او هم به راه اهر افتاد.

 غذا خالى بود؛ و او دعوت را فراموش كرده بود!

قوانين مدار الكتر يكى

در حالى كه آمير بيشتر به تأثيرات مغناطيسى ييوسته به جريان بـرقى تـوجه داشت،
 دبيرستان اشتغال داشت، خواست بفهمد كه شدت جريان برق جه الـو ارتباطى با جنس سيمى

 استفاده از سيمهايى كه طول و مقطع و جنس آنها متفاوت بود دريافت كه شدت بـا جريـا

 نيز شدت جريان آب با فشار وارد شده از طرن تلمبه و با مقطع لوله افزايش و و با طول لوله كاهش خواهد يافت و بستگى به جنس و مقدار مادهاى دارد كه در لوله انباشته شده است و و است در مقابل عبور آزاد آب مقاومت مىكند.
 شدت جريان مستقيماً متناسب است با اختلاف پتانسيلهاى برقى كه جريان را توليد مىكند،

23) Ohm

 مىكند.

170
و معكوساً متناسب است با مقاومت سيم كه آن نيز، به نوبةً خود بستگى دارد به جنس سيم و مستقيماً متناسب است با مقطع سيم و معكوساً متناسب است با طول آن. اهم يافتههاى خود را تحت عنوان مدار كالوانيكك بررسى شده از راه رياضى انتشار داد كـه شـالوده تمـام مطالعات بعدى درباره́ مدارهاى برقى قرار گرفت. قانون اهم را مى توان با دو فرمول ساده زير بيان كرد.

$$
\begin{aligned}
& \text { مقاومت سيم } \\
& \text { مقطع سيم سيم C= مقاومت سيم }
\end{aligned}
$$

كه در آن C مقدارى است كه بستگى دارد به جنس سيمى كه به كار رفته است. واحـد

 مى آيد كه درست عكس مقاومت برقى است. بـه هـمين جـهت، واحــد قـابليت هــدايت الكتريكى را مهو (mho)، يعنى معكوس ohm؛ مىنامند. (شكل ا - ه ا ه وسايل مختلفى راكه در كارهاى آزمايشى با پديدههاى برقى به كار مىرود، نشان مىدهد.

كشفيات فاراده
مايكل فاراده (شكل 9 - ه)، كه تحقيقات مربوط به یديدههاى برقى و مغناطيسى را
 (IVal
 نام صاحبش آقاى ريبو هr بود به عنوان پادو مشغول به كار شد. سال بعد آقاى ريبو او را به

25) Riebau

〇 177 سرگذشت فيزيك
مدت V سال براى كار صسافى اجير كرد. فاراده نه فقط كتابهايى را كه به مغازه مى آوردند
 شديدى به علم در وى به وجود آورد. فاراده درباره́ دوران جوانى خود جنين نوشته است:

نهابشى از وسايل برتى گرنانارن

تطب بـديدار مىشود.

I IY O عصر برق
 بخوانم. و در ميان آنها از كتاب مقالاتى دربارهٔ شيمى مارست آلا

 كشفيات گالوانى و ولتا هنوز جزو خبر هاى تازه و و نو بهشمار میرفت)، به يك يكى از دوستانش بنجمينابت 「T حنين نوشت:
اين اواخر جند آزمايش سادة كالوانيك را ما منحصرآ به اين منظور انجـام دادم كـه اصول علم را برای خودم مصور سازم. عازم فرامم كردين قدرى نيكل شدم و يادم آمدكه

آنها روى دارند. مقدارى روى خريدم - آيا هرگز روى ديدهايد؟ نخستين قستى كه
 نازكك هستند. آنرا براى تهئ قرصهايى فراهم كردمكه با آن و با مس يك باترى كو جكت

سرگذشت فيزيك $\bigcirc 1$ 14
بسازم. نخستين باترى كه ساختم شامل هفت جفت صفحه بود!!! و هريك به بزرگى يك؛
سكه نيـ پنسى [حدود يكريالى]!!!

دو ست عزيز، خودم هفت قرص بريدم هريكك به اندازء نيم پنس. آنها را با هفت نيم پنسى بوشاندم و ميان آنها هفت تكه، يا بهتر بگو يم، شش تكه كاغذ گذاشتم كه در محلولى از موريات سوديوم فرو برده شده بود!!! اما ابت عزيز، ديگر نخنديد و تعجبى نكنيد كه تأثير اين نيروى توليد شده ناجيز بود. اين نيرو، براى تجزيءٔ سولفات منيزى كافى بود تأثيرى كه بى اندازه مرا متعجب ساخت؛ زيرا هيج نمىتوانستم فكر كنم كه اين عامل براى اين منظور مناسب باشد. به شما مىگويم كه در اينجا فكرى به خاطرم رسيد. ميان سر و ته بِيل و محلول را با سيم مسى ارتباط دادم. آيا مىتوانيد تصور كنيد مس بود كه محلول قليايـى خاكى را تجزيه كرد ـ مقصودم قسمتى است كه در محلول فرو رفته بو د؟ در اينكه يك اثر گالوانيكك رخ داده بود اطمينان دارم؛ زيبا هـر دو سـيم در مـدت كو تـاهى از حبابهاى گازى معين بوشيده شد و يكك جريان اتصالى از حبابهاى بسيار خرد، كه همجون ذرات ريزى نمايان بو دند، از سيم منفى در محلول روان شد. دليل من بر اينكه سولفات تجزيه شده بود، اين بود كه پس از تقريباً دو ساعت محلول روشن و صاف تـبديل بـه محلول تار و كدرى شد؛ منيزى در آن معلق بود. اين كشف تجزئَ شيميايى بهوسيلَ جريان برق يا حنانكه فاراده آنرا نام گــناشت، الكتروليز بود. فاراده در طى دو سال، باكارى كه دربارء́ اين جديده انجام داد، دو قـانون اساسى راكشف كرد كه اكنون به نام وى خوانله مىشود. بيان نخستين قانون فاراده ايـن است: جرم مادهاى كه در ضمن الكتروليز در هر الكترود جمع مىشود، متناسب با مقدار برقى است كه از الكتروليت مىگذرد. مفهوم اين بيان خنين است كه مولكولهاى باردارى (كه بعدها يون ناميده شدند) كه الكتريسيته را در محلولها مايع انتقال مىدهند، مقدار بار
برقى معينى دارند•(شكل • -

بنابر قانون دوم فاراده: جرم عناصرى كه بهوسيلة مقدار معينى برق تجزيه مىشود با وزن اتمى عناصر نسبت مستقيم و با ظرفيت آن نسبت معكوس دارد .

179 عصر برة

آزمايش فاراده دربارة قوانين الكتروليز. اگر يك جريان برق در محلونهاى نيترات نقره؛ سولفات مس، و كلرور آمونيوم فرستاده شود، فلزات بر الكترود منفى رسوب مىىنند. مقدأر فلز رسوب بافته متناسب است با مفدار برقى كه از محلول گذرد (قانون اول
 گرم (نصف وزن اتمى مس) و مفدار آلومينيوم رسوب يافته فقط وگرم (بك سوم وزن اتمى مس) است. جحرن مفلار برفى كه از هر سه ظرف مىگذرد يكــان است، نتيجه گرفته مىشود كه بار الكتريكى انتقال بافته بهو سبلئ يون مس دو برابر بار الكتريكى انتقال بانته بهوسيلٔ اتم نقره است؛ و از آن آلومينيوم سه برابر است. اين يافته با ظرفيتهاى شيميايى سه فلز، كه در فرمول آنها(بالاى شكل) هويداست، سازگار است. اين قانون، قانون دوم فاراده است.

اماك سِ از كشف الكتروليز، فاراده هنوز هم ناجار بود كه در جست و جوى كارى باشل، زيرا ملت خلدمتش در كتابفروشى چنل ماه بعد پايان مىیافت. بزرگترين آرزويش اين بود كه با سر همفرى ديوى ^ شيميلان معروف كار كند، زيراكنفرانسهاى او تو جهش را جلب كرده بود. فاراده يادداشتهاى خود را دربارهء كنفرانسهاى ديوى به خط خوانا نوشت، و شكلهايى را كه استادانه ترسيم كرده بود به آن ضميمه كرد. و بـا جـللىى زيبـا، ضـمن تقاضاى شغلى در آزمايشگاه، نزد سر همفرى فرستاد. وقتى كه ديوى نظر يـكى از مديران انجمن سلطنتى بريتانياى كبير راكه رئيس او بود6 دربارهُ شغلى كه بتوان به يكك صساف
 قول خواهد كرد. اگر قبول نكند6 براى هيع كارى خوب نيست.
 گذراند؛ نخست به عنوان دستيار ديوى6 سیس به عنوان همكار او6 و سرانجام پس از مرگَ ديوى به عنوان جانشين او.

جالبترين سند مربوط به مطالعات او، علاوه بر انتشارات متعدد در مجلات عـلمى، دفتر يادداشت وى است كه آنرا مرتباً از سال . سند در همين اواخر (سال و Y Y Y Y ()، توسط انجمن سلطنتى در هفت جلد قطور انتشار يافت
 يادداشت خود فاراده از مهمترين كشف خويش، يعنى القاى برقـاطيس، كـرده است نـقل
"با يك ميلةُ آهنى حلقهاى درست كردم. ضخامت ميله در حدود
 بارجه و نخ يوشيده شده بود، دور آن بستم. از سه تطعه سيم نيز استفاده كردم كه هر هريك

 يوشانيده بودم كه هيج كدام با ديگرى اتصال نداشت. اين سر حلقه را را د ناميدم مر در در طرف

ناميدم.
 مربع بود، شارزٌ كردم. بعد از وصل كردن سيمهايى كه در طرف B بود بود، انتهاى آنرا بـا بـا
 سانتيمترى حلقَ سيم)، مربوط ساختم. آنگاه دو انتهاى يكى از تطعـا

 ديگر بار، عقربه شروع به تغيير مكان كرد."
|Y| عصر برت

ترسيمى از دنتر يادداشت فاراده كه كشف او را دربارة الفاى برفاطيس مصور ساخته است. پيدايش و از ميان رفنن جريان برف در

 آن قرار دارد، القا كند؛ همانطور كه يكك بار برقى، قطبش برقى بر يكك جسـم نـزديكك ديگگر القا مىكند. اما، در حالى كه در مورد قطبش برقى سروكار با يكك اثر. ايستان است و اين اثر تا زمانى دوام دارد كه دو جسم نزديكك به هـم قـرار دارنـــ، القـاى جريـان بـرق
 صفر به مقدار عادى خود ترقى كند يا از مقدار عادى خود به صفر تنزل كند. سه ماه پس از كشف باب روز، فاراده گام ديگرى در مطالعات خود، دربارهُ رابطه ميان برق و مغناطيس، برداشت. در يادداشتهايش جريان امر را حنين شرح مىدهد:

إِّع	\square_{7}	
1.	ry	ا يا
7	ri	Y
	r 。	r
	Y	p
	YV	Δ
7	YD	7
7	Yr	V
	YY	1 يا يرهّ درونى

Y. Y.

 هـشت انتهاى پرهها در يكت طرف استو انه پاك و تميز شده، و همه با هم وصـل . DV شدهاند. هشت انتهاى ديگر نيز چنيناند.
(شكل ه - I Y). اين دو انتها بهوسيلة يكك سيم دراز مسى به گالوانومتر اتصال يافتهكه فتط سر آن از يكك ميله مغناطيسى استو انهاى، به قطر استوانهُ مارييج وارد شده است. اين دو سر سيم بسرعت در تمام استوانه فرو مىرود و عقربهُ گالوانو متر به حركت در مى آيد و سپس ميله بيرون كشيده مى شو د و دوباره عقربه به حركت در مى آيد؛ اما در جهت مخالف. اين اثر، هربار كه مغناطيس در استوانه وارد يا از آن خارج مىشود، تكرار مىگردد و در نتيجه، مو جى از الكتريسيته توليد مىگردد كه فقط مربوط به نزديكت شدن مغناطيس است و هيج ربطى به موضع آن ندارد. هA ترتيب حركتها، عكس آزمايشهاى سابق است حركتها در جهتى سازگار با آزمايشهاى بيش است، يعنى عقربه متمايل به متوازى شدن با مغناطيس انگيزنده است.

عصر برق OY
ه9. وتى كه هشت بره ماربيج درازى تشكيل مىدهنل، اثر در گالوانو متر به شدت سابق و شايد نصف آن هم نيست؛ بططورى كه بهترين وضع آن است كه تكه تكه باشند و انتهاى

آنها به هم متصل شود.

شكل ir - ir

ترسبمى از دفتر بادداشت فاراده كه در آن آزمايشى را مصور مىكندكه در Tن بكت مغناطيس، وقتى كه در يپجهاى فرو میرود با از آن بيرون كشيده مىشود، جريانى را در بيهه التا مىكند.

- 7. و قتى كه فقط يكى از هشت بره به كار مىرود، كمترين قدرت را دارد ـ به زحمت

محسو است.
در اينجا بازهم جريان برق در بيجه بديدهاى بويا بود، و جريان فقط وتتى وجـود

 ايستان مغناطيسها و سيمها را مورد نظر قرار دادند؛ مثلاً حالت ميلّ مغناطيسى شدهاى را با با

ترسيمى از دفتر بادداثت فاراده كه كشف او را درباره تأثير ميدان مغناطيسى بر نور مصور مىسازد. وتى كه نور تطبيده مىشود، در

 مغناطيس پديد آيد. تنها فيزيكدانى كه همين نظر را داشت، جوزف هنرى امر امريكايى بود. اما، وى در اعلام نظر خود حندان ترديد به كار برد كه حق تقدم اين كشف نصيب مردى از آنسوى اقيانوس اطلس شد.
مغز جستوجوگر مايكل فاراده، به اين اكتفا نكرد كه رابطه بِنهانى ميان الكتريسيته و مغناطس را بگشايد. او ميل داشت بداند كه آيا مغناطيسها مى توانند بر پديدهمهاى فيزيكى
 واتع در ميدان مغناطيسى مى گذذرد. (صفحه هـ • () IAYD 1 ستامبر
VP9^. امروز بر روى خطوط نيروى مغناطسسى كار كردم، آنها را از اجسام مـختلفى

عصر برق OO
(شفاف در جهات مختلف) گذراندم و، در ضمن، يكت شعاع نور قطبيده از آنها عبور دادم و، سچس، شعاع را با ذرهبين نيكول يا با وسائل ديگر بررسى كردم. مغناطيسها برقى بود. يكى از آنها، مغناطيس برقى استوانهاى بزرگك خودمان بود، و ديگرى هستئ آهنى مو قتى كه در جارجوب ثروانهاى گذاشته بود - اين مغناطيس به شدت مغناطيس سـابق نبو د. جريان پنج بيل باترى „گروو")، يكباره به هر دو پروانه فرستاده شد، و مغناطيسها، با وصل و قطع جريان، به ترتيب خاصيت مغناطيسى پيدا مىكردند و، سپس آنرا از دست مىدادند.
پس از توصيف حند نتيجهُ منفى، كه در آنها شعاع نور از هوا و از جند جسم ديعر مى گذشت، فاراده در يادداشت مربوط به همان روز مىنويسد:

تكهاى شيشهُ سنگين، كه هر دو لبئكو تاهش صيقلى شده بود، به ابعاد ه و Y ا سانتيمتر و به كلفتى I / ا سانتيهتر از جنس بورات سيليسيوم و سرب مورد آزمايش قرار گـرفت. وقتى كه تطبهاى همنام مغناطيسى يا قطبهاى ناهمنام در دو طرف مخالف بو دند (نسبت به مسير شعاع نور قطبده)، هيج تأثيرى نداشتند - و نيز و قتى كه تطبهاى همنام در يكك طرف بودند، خواه با جريان ثابت و خواه با جريان متناوب - اما وقتى كه تطبهـاى نـاممنام
 و، در نتيجه، اين واقعيت، به احتمال توى، در بررسى هر دو شرط نيروى طبيعى مفيد و
ارزنده خواهد بود.

شكل If - ه

و محققاً هنين شده است! (ااثر فاراده)، يا دوران سطح قطبش نـورى كـه در امـتداد

 الكترون متحرك وارد مىكند. حال آنكه، در حالت ديگر، نيرو در خلاف ايـن جهـا

 آن همان دوران سطح تطبش است كه فاراده آنرا مشاهده كرد درده است.

IYY O عصر برق
يكديگر بستگى دارند، سعى كرد كه رابطهاى نيز ميـان نيروهـاى برقـاطيسى و نيروهـاى
 جاذبه - به يقين، اين نيرو بايد بتواند رابطهاى تجربى با الكتريسيته، مغناطيس، و سـاير إير
 يك لحظه در نظر بگیريد كه چگكونه مى توان با تو جه به واقعيتها و از راه آز مونها بها باين موضوع نزديك شد. اما آزمايشهاى فراوانى كه وى براى كشف حینين رابـطهاى انجـام داد، بــه نـتيجهاى نرسيد. و در اين قسمت از دفتر يادداشت خود چنين نتيجه گيرى مى كیند: فعلاُ در اينجا آزمايشهاى من بايان مىياباب. تتايج منفى است. اين آزمايشها، با آنكه دليلى براى وجود جخنين رابطهاى فراهم نمىكند احساس شديد مرا نيز دربارة وجود رابطهان ميان جاذبه و الكتريسيته متزلزل نمى سازند.

 انجام دادن اين وظيفه، توفيق نيانته از دنيا رفت.

ميدان بر قاطيسى
كشفيات تجربى فاراده، هراندازه كه جالب باشد، با افكار نظرى و علمى وى سازگار بود. جون اطلاعات علمى او بسيار اندكُ بود و عملاً رياضيات نمىدانست، نمى توانست يك فيزيكدان نظرى باشد. اما حقيقت اين است كه براى تصور تصويرى نظرى از يك

 سردرگم شود، و جنانكه يكى ضربالمثل روسى مىگويد: "نتواند جـنگگل را بـه جـاى آى

سرگذشت فيزيك \bigcirc IYA
درختها بييند ". يِش از زمان فاراده نيروهاى بـرقى و مغنـاطيسى، مـثل نـيروى گـرانشـى، معمولاً به عنوان نيروهايى بهشمار مى آمدند كه در سرتاسر فضايى خالى اتـر مى كنند كه اجسامى را كه بر هم تاثير دارند از يكديكر جدا مىسازند. با همه اينها، در فكر ساده فاراده، يكیچنين "عمل و تاثير در مسافت" مفهوم فيز يكى نداشت، و وقتى مىديد كه بار سنگگينى از جايى به جايى ديگر حر كت مىكند مى خواست طنابى هم كه آن را مى كشد يا ميلهاى كه آن را مى اند نيز ببيند. از اين رو، براى آنكه نيروهايى را كه ميان بارهاى الكتريكى و مغناطيسها وارد مىشود، لازم بود فضايى ميان آنها تصور كند كه از چییى پر شده باشد كه بتواند بكشد يا براند. وى از چيزى شبيه به لولهاى لاستيكى سخن گفت كه ميان دو بار برقى مخالف يا قطبهاى مغناطيسى مخالف كشيده شده است (شكل ه - ها الف) و آنها را به سوى يكديگر مى كشد. در مورد بارهاى الكتر يكى يا قطبهاى همنام، اين لوله لاستيكى در جهتهاى مختلفى كشيده شده است (شكل ه - ها ب) و آنها را از هم دور مى كند. امتداد اين لولههاى فاراده را در مورد مغناطيسها مى توان با پاشيدن براده آهن بر روى صفحه شيشهاى، كه مغناطيس بر روى آن قرار دارد، پیيدا كرد. برادههاى Tاهن مغناطيسى مى شوند و در امتداد ان نيروهاى مغناطيسى قرار مى گیرند كه در طول لوله اثر مىكند و شكلى را یديد مى آورد كه در تصوير III نشان داده شده است است
 آورد؛ اما، انجام آزمايش دشوارتر است. بنابر نظريه فاراده، لولههاى بـرقى و مغنـاطيسى

 وارد مىكند و آنرا در جهت معينى مىكشانند. وقتى كه يكت سيم هادى نسبت بـه يكـ مغناطيس(يا برعكس)در حركت است، لولههاى مغناطيسى را قطعمىكند (شكل آ آ آ ه ه د) و، در نتيجه، جريانى در آن القا مى شود.
از يك جهت اين نظريههاى فاراده تا اندازهاى ساده و طبيعى بود، و بيشتر كـيفيت موضوع رانشان مىداد. اما توانست دورة جديدى در پيدايش علم فيزيك بهوجود آورد.

عصر برق O

شـكلـ
خطرط نير وى زاراده مربوط به انوا

 يكنواخت، توزيع شده بود و به آن " چچيز" ممكن. بود مقدار معينى دز مر نقطه اختصاص
 وارد شود؛ خو اه اعمال متقابل ميان اجسام برقى باشد يا مغناطيسى يـا گـرانشــى. آن وقت

 كشف خود را دربارة القاى الكترو مغناطيس اعلام كرده، به دنيا آمد. بـر خـلاف فـارادراده، مكسول در علوم زياضى بسيار قوى بود. در دهسالگگى، در آكادمى ادنبورگّك،بها مــدرسه رفت، و مجبور شد كه بيشتر وقت خود راصرف مطالعهٔ افعال بيقاعدهٔ زبان يونانيانى و ديگر
 نخستين موفقيت وى دراين علم، بنابر گفتئ خودش، "ساختن يك

 جلسئ آكادمى قرائت كرد، زيرا "شايسته بهنظر نمىرسيد كه كودكى بـا لبـاس رسـى از

 l IVFF

29) Aberdeen
|A| عصر برق
با آنكه در آغاز تمام علاقهَ مكسول متوجه مبحث رياضيات محض بود، بعد از مدت كو تاهى علاقهمند شد كه روش رياضى را در مبحثهاى گوناگون فيز يكى به كار بندد. او در
 مهمترين اثر وى بيان رياضى نظريههاى فاراده، مربوط به جنس و قوانين ميدان برقاطيسى، بو ده است. با تعميم دادن اين واقعيتهاى استخبارى كه ميدانهاى مغناطيسى متغير مـو جب القاى نيروهاى محركة برقى و جريان برق در هاديها مىشوند و حال آنكه ميدانهاى برق متغير ميدانهاى مغناطيسى توليد مىكنـد، معادلات معروفى نوشت كه اكنون بــه نــام وىى خوانده مىشود. اين معادلات ميزان تغير ميدان مغناطيسى را با توزيع فضايى ميدان برقى،
 مغناطيسى شده و اجسام هادى باردار و جريانهاى برق، مى توان ميدان برقاطيسى اطـراف

 "بيو ستهاند "، خو دشان نيز مى توانند وجو د داشته باشند و به شكل امواج برقاطيسى در فضا

 مىكند. و دز لحظهای كه شدت ميدان برقى به صفر مىزسد، تمام انرزّى دستگاد دز اين

A IV شك

(a) (a)
 الككر يكى باز مى گر دد، و سرانجام به مرحلّأى میزسيم كه جر يان صفر شلـه است و دو

 برقى به بيش و بس صوز

عیر برن OY O
مكسول، با استفاده از معـادلات خـود، تـوانست ثـابت كـند كـه نوسـانهاى مـيدان برقاطيسى، از نوعى كه در بالا ذكر شد، در فضاى اطراف نوسان كننده به شكل امواجى
 شدهاند، و حال Tانكه خطوط نيروى مغناطيسى عمود بر آنند، حاملهاى برقى و و مغناطيسى

 يشبينى مكسول نگذشته بود، ثابت كرد. همين امر منجر به تكميل فن ارتباطات بى سيم شد كه امروزه از شعبهماى اصلى تمدن صنعتى بها باشمار مى آيد. اينك مى خواهيم،تا حدى مشروحاً، يكى از مهمترين نكات انظات نظرئّ مكسول را مورد

 نيروى ا دين بر واحد بار برقى واقع در آن اثر كند. تعاريف مشابهى نيزّ، در در مورد واحيد

 مغناطيسى توليد شده بهوسيلهُ يك جريان برق.

-
 فرض كنيم كه عمل جريان برقى را بر يكك قطب مغناطيسى، كه در يكت سانتيمترى
 كنيم كه در يك ثانيه واحد باز برقى تعر يف شده در در فوق را التقال مىدهمد. در آن آن صورت

 سانتيمترى آن اثر كند. اما در اين صورت، مقدار برق جر يان يافته در سيمى كه حامل يكى

1N0 (10 بصر بر
واحد جر يان برقى است برابر نخو اهد بود با واحد بار برق ساكنى كه در با بالا تعريف كر ديم.

 (بانسبت •• •

 به تأير جريان برق بر قطب مغناطيسى تعريف شود، واحدى بهدست خوإمد آمد به نـام

 ميدانهاى برقى و واحدهاى cmu را بـرای مـيدانهـاى مغنـاطيسى بـه كـار بـر د، ضـريب
 مغناطيسى شامل بود راه يافت. با به كار بستن اين معادلات بـراى تـوصيف انتشـار امـواج برقاطيسى حنين نتيجه گيرى شد كه مقداز عددى سرعت انتشار برار برابـر است بـا بـا نسـبت دو
 مدتها بِش از آنكه مكسول متولد شود، به روشهاى مختلف اندازه

 برقاطيسى نور. اكنون، ما عمل متقابل نوز و ماده زاكه شامل پديدهمهاى نشر، انتـــاز، و و

جذب نوز است، ممحجون نتيجهٔ نيروهايى تصور مىكيمّ كه بين امواج كو تاه در حال انتشار و ذرات الكتر يسيته داز بسياز زيز، يعنى الكترو ونهايى كه برگر درد هستئ اتمى كه بار بار الكتريسيتئ

 نسبت واحدهاى Csu و cmu از يكت طرف و سرعت نـور از طـرف ديگـر، اغـلب بـه كشفيات اساسى و تعميمهاى وسيع در علم فيز يكن منجر شده است. بعداً در همين كتاب خواميم آموخت كه انطباقى نظير همين انطباق، ولى ميان دو مقدار ثابت فيز يكى كي كه يكى يكى
 سطح زوشن شده توسط اشعهُ فوق بنفش، اهميت فوقالعادهاى در بيدايش نظريؤكوانتومى

انقلاب نسبيتى

 ممكن و ناتوان يافتند و آنجه تلاش در اين راه كر دند به تضادهاى شديدى منجر شد.

بحران علم فيز يك رسمى

بديهى است كه يديدهٔ تطبش نور ثابت مىكند كه، در اينجا، با ارتعاشاتى عـرضى

 مى توانند ميليونها سال بر گرد خورشيد بحرخند؛ بدون آنكه در هيجّجا با مقاومتى روبهرو شوند؟
فيزيكدان مشهور انگليسى، لرد كلوين، سعى كرد اين تضاد ظاهرى را خنين حل كند كه به اتر جهانى خواصى شبيه به خواص جسب و و لاك مكي منسوب سازد. ايـن مـواد داراراى

 امواج نورانى، كه در آن مورد نيرو جهت خود

 دايمى و بارهاى الككريكى ساكن در مدت زمان مشهودى وجود كثشها بسرعت بهوسيلَ بارهاى كشسان در اين مادئ مرموز رها رها مى شوندئد. البته، بعد از اط اطلاع يافتن جواب صصحع يك برسش، انتقاد از مردمى كه به نتايج اشتباهآ آميز رسيدهاند بسيـار آسان است. اما واقعاً جاى تعجب است كـه فيزيكدانـان بـزرگك قـرن نـوزدهم مـــقق

انقلاب نسبيت O 1 O9

نداشتهاندكه اگر اتر جهانى وجود دارد، بايد خواصى كاملا متفاوت با خواص اجسام مادى
 سياليت مايعات، كثسانى جامدات، و همئ خواص ديگر اجسام مادى مراس مربوط به ساختمان مولكولى آنهاست، و نتيجهٔ حركت مولكولها و نيروهايى است كه بر آنها وارد مىشود.
 جدول تناوبى عناصر خودش عدد اتمى صفر را به اتر جهانى اختصاص داد، كس كس ديگرى هرگز نينديشيده بود كه شايد اتر جهانى از خود ساختمانى مولكولى داشته باشد؛ در هـر

 مغز آدمى بيش از اندازه مسصور در طرز تفكر سنتى بود. در نتيجه جنين لازم بود با بها نبوغ
 مفهوم دامنهدار ميدان برقاطيسى را قرار دهد و به آن واقعيتى فيزيكى راكيا، برابر با واقعيت فيزيكى هر جسم مادى معمولى، نسبت دهد.

سرعت نور
نخستين كوشش را برای اندازه گـيرى سـرعت نـور گـاليله انجـام داذ. وى در يكـ شامگاه با دستيارش و دو فانوس، كه محفظه روشنايى آن باز و و بسته مى شده، به بيرون شهر

 وى، دريجهٌ روشنايى فانوس خود را باز مىكرد. تأخيرى كه در رسيدن علامت بازگشت نور رخ مىدادء، مىرسـاند كـه نـور بـا سـرعت مـعينى مـنتشر مـىشود و مــىتوان آنرا

 بسرعت دوران مىكردند و با جنان سرعتى مى

 جرخاند، متوجه شد كه نور بدون مانع از ميان دستگاه چـرخها

 داد.
روش فيزو مى توانست فقط براى اندازه گيرى سرعت نور در هوا (كه عملا برابر با

انقلاب نسبتى 191
فرانسه بودند، آزمايشهاى فيزو را حنين تكميل كرد كه بهجاى چرخهاى دنـدانـهدار يكـ آينغ دوار به كار برد و، در نتيجه، طول مسـير نـور راكو تـاه كـرد. ايـن تـرتيب، كـه در شكل ا - 9 ب نشان داده شده و توضيح آن آشكار است، توانست طول مسير نور را فقط
 بَذذراند. با انجام دادن اين آزمايش فوكي دري دريافت كه سرعت نور در اجسام مار مادى كمتر ازسرعت

ررشهاى فيزر (الف) و نوكر (ب) براى انداز. گيرى سرعت نور

آن در خلأاست و در نتيجه نظريههاى هويگنس را در مقابل نظريههاى نيوتن تأيد كرد.
 غيره درست برابر است با خارج قسمت سرعت نور در خالً بر ضريب انكسار مادهٔ مورد

سرعت نور در محيطى متحركى

با در دست داشتن روشهايى براى اندازه گيرى سرعت نور، فيزيكدانان قرن نوزدهم

 سازند. آزمايشى كه با وجود امميتش مفهوم كامل آن تا بس از از نخستين انتشارات اينشتين

 سرعت انتشار در مورد امواج صوتى كه در هوا سر سير مىيكند مستقيماً تحت تأثير جرم هورا

 سرعت در آن روان است، اندازه بگيرد. آيا در اين حالت، سرعت حركت آب آب به سرعت

 اختلاف ميان سرعتهاى نور در آب ساكن و آب متحرك دان دانسته شود، مى توان روش بـر بسيار
 است كه در شكل Y -
 شيشهاى با لا ياء بسيار نازكى از نقره اندود شده كه ضهخامت آن درست به اندازها آى است كه

نيمى از نور تابيده بر آنرا منعكس كند؛ در صورتى كه نيم ديگر از آن مى گذذرد و بـــ
 كه ارتعاشات آنها، درست مانند آنحه در آزمايش يانگك در فـصل دوم تـوصيف شـــــ،

 چيرتو همفاز در حشم (E) ناظر وارد مىشوند (يعنى فراز بر فراز و نشيب بر نشيب)، و بـا افزوده شدن بر هم شدت اوليه را به دست مىدهند. ولى اگـر آب درون دو لوله در دو

ش

 مى توانيم يك تخمين تقريبى بزنيم كه با جه سرعتى آب بايد در د
 طول موجى كه به كار رفت در حدود

سرگذشت فيزيك $\bigcirc 194$
كند (از r ميليون به به اندازهٔ
 حلود:
位 $\frac{Y \times 1 \cdot 1 \cdot}{1 / V \times 1 \cdot v}=1 \ldots \mathrm{~cm} / \mathrm{s}=1 \cdot \mathrm{~m} / \mathrm{s}$ امكانيذير جريان آب است كه در لولههاست. از إين رو ممكن است با مشاهدء نوارهاى تداخلى در اين آزمايش، بهوجود تغيرات سرعت نور مورد نظر پیى برد. با انجام دادن اندازه گيريهاى صحيح با سرعتهاى متغير جريان آب، فيزو به نتيجهاى رسيد كه مابين دو امكان مورد انتظار بود. سرعت نور در آب جارى متفاوت بود با سرعت نور در آب ساكن، اما تفاوت كمتر بود از سرعت جريان آب. از جابهجا شــدن مشـهود نوارهاى تداخلى، وى دريافت كه سرعت نورى كه در امتداد جريان آب منتشر مىشود به اندازه FF درصد سرعت آب افزايش يافته است؛ حال آنكه از سرعت نورى كه در امتداد مخالف جريان Tب انتشار مى يابد به همين اندازه كـاسته شــده است. وقـتى كــه مـايعات ديگرى به كار رفت، كشش وارد بر نورى كه در آنها انتشار مىيافت مقادير عددى مختلفى را به دست داد ، و معلوم شد كه سرعت نور در يكت سيال متحرك مى تو تواند عـموماً بـه وسيلة فرمول اختبارى

$$
V=\frac{c}{n} \pm\left(1-\frac{1}{n^{r}}\right) v
$$

بيان شود، كه در آن n ضريب انكسار سيال مورد نظر و V سرعت حركت سيـال است.
 است تفسير و تعبير شود، و اين موضوع تا نيم قرن بعد به همين حال باقى ماند تا وقتى كه اينشتين نشان داد اين فرمول اختيارى نتيجهٔ مستقيمى از نظرئه نسبيت است.
 است كه با اطلاعات موجود سازگار باثد.

سرعت نور بر روى كر ه زمين متحرك

 حركت يك جريان آب تند رابر نورى كه در آن انتشار مى ايابل مشاهده كند، بايد بتوان

 (r • km/s

 مايكلسن و مورلى، در عوض، مدت زمانى را اندازه گرفتند كه نور، در در يك

 رود. در حالت اول، در طى قسمتى از سفر حركت قايق همراه با جريان آب و و سـر آر آت

 خواهد رفت. اگر L مسافت ميان مبدأ و مقصد قايق باشد، زمان لازم براى بازگشت آن

$$
t \leftrightarrows \frac{L}{V+v}+\frac{L}{V-v}=\frac{Y L v}{V^{r}-v^{\gamma}}=\frac{Y L / V}{v^{\gamma}} \quad: \quad \text { جنين است }
$$

جون، در آبى ساكن،

 آشكارا نسبت BC برابر است با نسبت سرعتهاى جريان آب و موتور. با به كار بردن قضيئ فيثاغورس در مثلث ABC، خواهيم داشت:

$$
\overline{\mathrm{AB}}^{r}+\left(\overline{\mathrm{AC}}+\frac{\mathrm{V}}{\mathrm{v}}\right)^{r}=\overline{\mathrm{AC}}^{r}
$$

$$
\overline{\mathrm{AB}^{r}}=\overline{A C}^{r}\left(1-\frac{V^{r}}{v^{r}}\right)
$$

$$
\overline{A C}=\frac{A B}{\sqrt{1-\frac{v^{r}}{v^{r}}}}
$$

انقلاب نسبيت $19 Y$
اگر AB = L باشد، مدت زمان رفت و برگشت حنين است:

$$
t \uparrow \frac{Y A C}{V}=\frac{Y L / V}{\sqrt{1-\frac{\mathrm{v}^{r}}{V^{r}}}}
$$

در اينجا نيز عيناً مثل حالت بيش مدت لازم براى حـركت در آب سـاكـن زيـادتر است. اما، ضريب نسبت آل بهدست آمد.

 آسانى حول محورش بحرخد. يك هيرتو نور از لامپ L به صفحهاى شـيشهوانى، كـه در مركز تختهٔ مرمرى قرار داشت، مىتابيد. صفحئ شيشهاى با لائه نازكى از نقره يوشيده شده

 دست كم، تداخل مخربى وجود داشت. اينك تخمين عددى تقريبى از اوضاع و احوال.

دستگاْ آزمايش مايكلسن - مورلى كه مسير اشعئ نور را نشان مىدمد. اشعهاى كه بر آينههاى Mr , M| مى آبد و منعكس مىشود براى سهولت ترسبم، تا اندازهاى نسبت به يكديگر جابهجا شدهاند. صفحئ P براى اين نصب شده كه مسير اضافى شعاعى راكه در صفحئ Pr به سوى Mr میرود، جبران كند.
نسبت دو دوره́ زمانى، فرمولهاى سابق، چخين است:

$$
\frac{1-\frac{v^{r}}{c^{r}}}{\sqrt{1-\frac{v-r}{c^{r}}}}=\sqrt{1-\frac{v^{r}}{c^{r}}}
$$

كه در آن به جای سرعت V سرعت نور V V كذاشته شده است. نسبت
 كرد

$$
1-\frac{1}{r} \frac{v^{r}}{c^{r}}=1 \cdots \cdot \cdots \cdot \Delta=\cdot / 999999990
$$

در نتيجه6 اختلان ميان زمان رسيلن دو موج، فقط ونج ده ميليونيم يكَ درصد است. اما همين مقدار بسيار كو خكك، به اندازه كافى بزرگك هست كه وسايل حساس بصرى آنرا دركك كند. واقعاً هم اگگر قطر تخته مرمرى ץ متر بود (و تقرياً چنین هبم بود)، ملت زمان
$199 \bigcirc$ انقلاب نسبيتى

ميان زمان رسيدن دو موج به تلسكوب حجنين بود:

$$
\Delta \times 1 \cdot-9 \times 1 \cdot-1=\Delta \times 1 \cdot-1 v_{s}
$$

$$
\frac{7 \times 1 \cdot-}{r \times 1 \cdot 1 \cdot}=r / \Delta \times 1 \cdot-1 \Delta
$$

در نــتيجه اخــتالاف زمــان rer ارتعاش بود و بايستى مقدارى تداخل مخرب پديد آورد. اتـر، در آزمـايش واقـعى، بـه

 مخالف صورت گیرد؛ بهطورى كه مقدار كل جابهجا شدن ها درصد فاصلة ميان نوارهاى

در فضا km • • د در ثانيه است.
آزمايش انجام گرفت. آيا هيج حركتى در نوارهاى تـداخـلى در هـيتِ جـا وجـود نداشت؟ چچگونه مى توانست حنين باشد؟ آيا اتر سبك كشش خر خود را • . . ا درصد بر زمين متحركك وارد مىكرد؟ تكرار آزمايش مايكلسن در بالونى كه در ارتفاع زيادى نسبت بـه
 اين موضوع بدهند. فيز يكدان بريتانيا يى (كه اصلاً ايرلندى بوده)، 'فيتز جرالد الد ' '، يكك بيشنهاد انقالبى كرد؛ مبنى بر اينكه اجسام مادى كه با سرعت v در اتر جهانى حركت مى نسبت فرض شود در تمام اجسام، صرفنظر از ساختمان فيزيكى آنها، يكسان است، مسافت ميان صفحهٔ مركزى و آينٔ روبه باد اترى آزمايش مايكلسن - مورلى را درست به انـدازه آن انـ

10) Fitzgerald

سرگذشت فيزيك
مقدار معينى مىكاهد كه مدت زمان رسيدن امواج برابر شوند و هـرگونه جـابـابهجا شــدن

 صورت گرفت؛ ولى همئ اين كوششها بيهوده بود.

يك پو ده́كو تاه نمايشى
يس از آنكه با توضيح اينشتين در باره́ نتيجأ مـنفى آزمـايش مـايكلسن - مـورلى

 مىشود)، و در جهت حركت آب با همان سرعت سابق نسبت به آب ران راه مى افتلد. بطرى را را

است؟
ريش از آنكه به خواندن اين كتاب ادامه دهيد، سعى كنيد اين مسئله را حـل كــينـ،
 واماندند. اما اگر بهجاى درنظر گرفتن وقايع توصيف شده نسبت به خـط سـا سلحلى رودخـانـه
 بسيار ساده خواهد شد. فرض كنيد كه بر قايقى نشستهايد كه در جهت حركت آب شناور

انقلاب نسبيتى Y-1 Y

است، و به اطراف مى منگريد؛ درحالى كه آب نسبت به ما بيحركت است، اما كنارهما و پلها

 مدت، خط ساحلى و يل يك ميل حركت كردرماند. درنتيجه سرعت يل نسبت به آب با يا، به
 در ساعت است. آيا اين ساده نبود؟
سرگذئت فيزيكت

نظرى به زندكينامهٔ اينشتين

انقلاب نسبيتى ○

 اين موضوع، در فصل بعد توصيف خواهد شد. مهمترين مقاله، در توسعه و تكميل علم
 اندازهگيريهاى سرعت نور اختصاص داده شده بود. اين نخستين نـوشته در بـاره نـظريئ

نسبيت بود.

نسبيت حركت

 به گره گورديوسبود ميلُّ ارابئ گورديوس، شاه دهردهو

 رسمى، فرمانرواى فيزيك جديد شد.

اما، اگر اترى جهانى نباشد كه تمام فضاى عالم را پر كند، هيجّ حركت مطلقى هم
 بنابراين فقط مىتوان از حركت نسبى يك جسم مادى نسـبت بـه جسـمى ديگـر و يكـ

 فرضى گاليله، كه بر آبهاى آبى فام مديترانه بادبان كشيده بود، حقيقت داشت، دربارئ امواج
r•ه O انقلاب نسبيتى
نورانى و ديگر یديدههاى برقاطيسى بر روى كرهٔ زمين متحركك در فضا نيز صحت دارد.

 ناممكن است كه از راه مشاهدهٔ پديدههاى مركا مكانيكى.

بيوستگى ».جاگًاهي
اينشتين دريافت كه صورت گستردهٔ احل نيوتن، درباره نسبيت حركت، مستلزم تغير

 فضاى مطلن، در نفس خود، بدون ارتباط با هيجِ קيز خارجى، هميشه يكسان و حركت نإنذير باقى مى ماند. زمان مطلق و درست رياضى، در نفس خود و به واسطة طبيعتش، بدون هيج ارتباطى با خارج يكنواخت مي گذرد.

در حالى كه تعريف نيوتن دربارهٔ فضا وجود يكك دستگاه مقايسهاى (مختصات) را
 مطلقى را شامل است كه بتواند با تعداد فراوانى از ساعيا فرامم شود كه در قسمتهاى مختلف فضاى جهانى استاندهٌ جهانى را نشان دهند. همانطور كه ثابت بودن سرعت نور فكر فضـاى مـطـلى فـلق را

○ Y.
سست مىكند، دستگاه زمانيابى جهانى را نيز متز لزل مىسازد. براى آنكه اين حادثئ زمان

 زمان صحتح در ايستگاه گيرنده در لحظة بازگشت يسام به ايستگاه فرستنده بود. جون، بنابر آزمايش مايكلسن - مورلى، سرعت نور در خلاء هميشه يكسان است و
 ديگر آن است كه دو علامت نورانى از نقطهاى كه درست ميان دو ايستگاه است، در دو
 علامت، يك زمان را نشان مىدهند يا نه. مرحلهُ بعد اين است كه ساعت را وابسته به دو دستگاهى سازيم كه نسبت به يكديگر

 بزرگگ و اغلب مطلاى آنها هميشه زمـان و وقت صـحيح را نشـان مـىدهد، بـى انــدازه

انقلاب نسبيتى Y•Y O
مىنازند. برای انجام دادن روش همزمان ساختن فوق، ترمزبـان بـايد فـانوس خـود را از نقطهاى در وسط قطار تكان دهد؛ در حالى كه مهندس و رانندهٔ قطار كه سـر خـود را را از رينجرهٔ لوكوموتيو و آشیزخانهٔ قطار بيرون آوردهاند، بايد زمان دقيق رسيدن نور فانوس را بر ساعتهاى خود بررسى كنند.
اين طرز عمل، رامى را به ياد ما مى آورد كه كاليله برای اندازه گيرى سـرعت نـور بهوسيلهُ فانوس به كار برد. البته، منظور اين نيست كه در اينه اينجا حنين آز مايشى، واقعاً، بايد توسط كاركنان دو تطار انجام گيرد. اين آزمايش بيشتر جنبةٔ آزمايشى را دارد كار كه اينشتين

 نتايج آزمايش مايكلسن - مورلى)، نتيجه گيرى شود.

همزمان ساختن ساعتها در دو فطار كه نسبت به يكديگر در حركتند.
با به كار بردن اين روش در هر دو قطـار B , A، سـاعتها را در هـريك از آ آن دو مى توان همزمان ساخت. آن وقت با مسئلّ مقايسءٔ زمانيابى در يك تك قطار با زمانيابى در قطار

 دهند. همين كار را رانندهٔ A و مهندس B نيز مى توانند بكنند.

 بر هم منطبق هستند.

 نور را مىيبند هر دو ساعت يكك زمان را نشان دهد، ساعت مهندس قطار A بايد نسبت به رانندهٔ قطار B، در لحظهُ عبور از مقابل هم، عقب باشد. با با استدلال مشابه ساعت رانـنده

 نادرست است و ساعت لوكوموتيو A نسبت به ساعت آشيزخانئه همان قطار عـق همحجنين مسافران قطار A، جون ميزان كردن ساعتهاى خود را درست مـيددانـند، دربـاره ميزان كردن ساعتهاى قطار B ترديد دارند. مهندس قطار A خواهد
 داشت كه ساعت مهندس قطار B عقب است. هر دو قبول دارند كه ميزان كردن ساعت در در ا مرا قطار Bكاملا غلط است، و ساعت لوكوموتيو B نسبت به ساعت آشيزخانٔة B عقب است.

انقلاب نسبيتى P.9

اين استدلال هرگز نمىتواند تكليف را معين كند، زيرا قطارهاى A و B هيَ مـزيتى بـر يكديگر ندارند. و بايد نتيجه بگيريم ساعتهايى كه در دستگاهى ميزان شدهاند، اتر از دستكاه ديكرى،كه نسبت به آن در حركت است، مشاهده شونل به نظر همزمان نيستنل و برعكس. بهبيان ديكر دو حادثه كه در فاصلهُ معينى از يكديكر (طول قطار) در يكك لحظه روى مىدهند، اكر از دستكاه ديكرى ديله شوند، كه نسبت به آن دستكاه در حركت است، همزمان به نظر نمىرسند. بنابراين فضا، دست كم تا حدودى، با زمان قابل تعويض است، و جدايى صرفاً فضايى دو حادثه در يكك دستگاه منجر مىشود به اختلاف زمان معينى ميان آن دو حادثه، وقتى كه از دستگاه متحرك ديگرى به آنها نگاه شود.
برای مصور ساختن اين بيان، مردى را درنظر بگيريم كه در واگن رستوران قطار در حال حركتى غذا مىخورد. نخست سوب خود را مىخورد، سپس گـوشت و پس از آن دسر را. اين سه حادثه، نسبت به قطار، همه در يكت جا (سر ميز) اما در زمانهاى مــختلف روى مىدهد. با همةٔ اينها از نظر ناظرى كه بيرون قطار است، اين مرد سوب و دسر خود را در جاهايى مى خورد كه كيلومترها از هم فاصله دارند. اين واقعيت ساده و غـير عـملى را مى توان چنین بيان كرد: حوادثى كه در يكکجا، ولى در زمانهاى مختلف، در دستكاهى روى مىدهد، هركاه از دستكاه ديترى، كه نسبت به آن دستكاه در حركت است نعاه كرده شود، در جاهاى مختلف وقوع میيابد. اكنون، در بيان فوق كلمءٔ (اجا) را باكلمءٔ (ازمان)) عوض كنيم و بر عكس. آن وقت هنين خواهيد داشت: حوادثى كه در يك زمان (يعنى با هـمم)، امـا در جاهاى مختلف، در دستحاهى روى مىدهد، هركاه از دستكاه ديترى، كه نسبت به آن دستكاه در حركت است، نكاهكرده شود، در زمانهاى مختلف روى مىدهد. اين درست همان نتيجهاى است كه در بالا به آن رسيديم. اگگر يكك فاصلة زمانى صفر، وقتى كه از دستگاه متحركى نگاه كرده شو د، بزرگتر از صفر شود، پس يكك فاصلd زمانى معين ميان دو حادثه نيز، وقتى كه در همان دستكاه نكاهكرده شود، بايد افزايش يابد. اين همان انبساط زمانى معروف يا عقب انتادگى ساعت (و همراه با آن، همةُ فرايندهاى فيزيكى و شيميايى و حياتى) است، وقتى كه از يكك دستگاه متحركك

ديده شود. انبساط زمانى، مثل همةٔ پديدههاى نسبيتى، نسبت به دو دستگاه متحرك نسبت

 فرمول زيربددست مى آيد:

$$
t=\frac{t_{0}}{\sqrt{1-\frac{v^{r}}{c^{r}}}}
$$

كه شبيه به فرمول انقباض فيتز جرالدى است؛ جز اينكه راديكال آن در مخرج قرار گرفته

كند شدن همةٔ فـرايندهـاى فيزيكى در دستگاهـهاى متتحركى، در مـورد تـلاشى

 در مقياس وسيعى ثابت شود.

مكانيكك نسبيتى

انقباض مسافتها و انبساط فواصل زمانى، وقتى كه از دستگاهى متحرك ديده شوند،

انقلاب نسبيتى O 11
دستگاه اول اندازهگيرى شده است، مرتبط مى سازد. دو دستگاه مختصات (x, (x', y) و (

 هم دور مىشوند؛ به طورى كه

$$
X^{\prime}=X+v t
$$

مى توان فرمول زير را نيز اضافه كرد:

$$
\mathbf{t}^{\prime}=\mathbf{t}
$$

كه فقط تعريف نيوتنى زمان مطلق را دوباره بيان مىكند.
 مختصات"، موضوع ساده و بيش پا افتادهاى بهشمار مى آمد؛ فرمول دوم حتى نوشته هم نمى شد. اما امكان تبديل نسبى مسافتهاى فضايى به اختلافات زمانى مستلزم اين است كه به جاى اين فرمول ظاهراً ساده فرمول سفسطه آميز ترى گذاشته شود، و مىتوان نشان داد كه
 تبديلات نيوتنى كهن بايد به مجموعهُ جديدى تبديل شود:

$$
\begin{array}{r}
X^{\prime}=\frac{x+v t}{\sqrt{1-\frac{v^{r}}{c^{r}}}} \\
t^{\prime}=\frac{t+\frac{v^{r}}{c^{r}} x}{\sqrt{1-\frac{v^{r}}{c^{r}}}}
\end{array}
$$

اين عبارات كه به تبديلات لورنتس موسوم است، اندك مدتى مي آزمايشهاى مايكلسن - مورلى، توسط فيزيكدان هلندى، لورنتس، استنتاج شد. اما واضي اري

آن وُ ديگر دانشمندان فيزيك آن زمان، اين عبارات راصرفاً يك نيرنگك رياضى بهشمار
 واقعيت فيزيكى، و تغير فاحشى را در مفاهيم سادءٔ قديمى در ارتباط بــيا فضــا و و زمـان و و حركت ايجاب مىكند. اينشتين متوجه شد كه، در حالى كه تبديلات گاليلهاى نسبت به مختصات فيات فضايى و

 مىريزد؛ در حالى كه جذر مخرجهاى دو كسر منجر مىشود به انقباض مسافتها و انبساط

زمان.
در اين مورد، لازم است دربارءٔ سوء تفاهمى بحث شود كه مربوط است به انقباض

 امريكايى، در سال 9 9 9 1 با انتقاد مختصرش أن آنزرا درست و مرتب ساخت. فيزيكدانان هــميشه بــر ايـن عـقيده بــودند كــه درواقع انقباض طـول را، بـه نسبت ضـريب ($\sqrt{1-\frac{\mathbf{V}^{r}}{c^{r}}}$

انقلاب نسبيتى O OIT
 مشاهده خواهد كرد. ترل نشان داد كه اين مفهوم نادرست است و، از لحاظ مشاهدهٔ بصرى،
 سكون است. اين نتيجه مربوط است به اين واقعيت كه به علت سرعـي

 ازاى c = = ، در هر حال، انقباض نسبيتى طول بهازاى هر مقدار از سرعت نسـبى دو دستگاه صفر بود.
در حالى كه انقباض نسبيتى طول نمى تواند توسط ناظرى جدا گانه ديده شود، بنابر

 است به نوعى دوربين عكاسى، كه از نوك تا تا دم هواييما را از هر سـو گـر گـرفته است. ايـن

 به خلبان آن خواهد گفت (شاشما نيز كو تاهتر هستيد!)

 در ساعت از قسمت انتهاى كشتى به طرف سر آنراه مىافتد (شكل 1 - - ج). سـرعت
if موتوسيكلت سوار نسبت به آب چقدر است؟ در مكانيك رسمى جواب ساده است +97 + نمى تواند در مكانيك نسبيتى درست باشد. در واقع اگر سرعتهاى كشتى و موتو توسيكلت،

 فرمول نسبيتى براى جمع كردن دو سرعت VY و V

$$
V=\frac{v_{1}+v_{r}}{1+\frac{v_{1}+v_{r}}{c^{r}}}
$$

شمك نسلي دو سرعت

انقلاب نسبيتى

$$
V=\frac{c+V_{r}}{1+\frac{c_{r}}{c_{r}}}=\frac{c+V_{r}}{1+\frac{V_{r}}{c}}=\frac{c\left(c+V_{r}\right)}{c+V_{r}}=c
$$

VI=C يعنى هر سرعتى كه به سرعت نور افزوده شو د، سرعت نور را افزايش نمىدهد. اگر
و Vr = باشل، باز هم خواهيم داشت:

$$
V=\frac{c+c}{1+\frac{c_{x} c}{c^{r}}}=\frac{r c}{1+1}=c
$$

فرمول نسبيتى براى جمع كردن دو سرعت آزمايش فيزو راه كه حلود نيم قرن يسش انجام گرفت و قبلاً توصيف شد، توضيح مىدهد. اگر به جاى Vا مقدار سرعت نور در

داشت:

$$
V=\frac{c / n+v}{1+\frac{c v}{\mathrm{nc}^{r}}}=\frac{\mathrm{c} / \mathrm{n}+\mathrm{v}}{1+\frac{\mathrm{v}}{\mathrm{nc}}}
$$

با ضرب كردن صورت و مخرج در مقدار (1 -) خواهيم داشت:

$$
V=\frac{(c / n+v)(c / n-v)}{1-v^{r} / n^{r} c^{r}}=\frac{c / n+v-v / n^{r}+v^{r} / n c^{r}}{1-v^{r} / n^{r} c^{r}}
$$

 هم كوحكتر است: در نتيجه، باصرفن نظر كردن از جملههاى محتوى Vr / Cr در فرمول بالا حنين بهدست مى آيد.

$$
v=\frac{c}{n}+v-\frac{v}{n^{r}}=\frac{c}{n}+v\left(1-\frac{1}{n^{r}}\right)
$$

كه عيناً همان فرمول اختبارى فيزو است. بنابراين جيزى از قبيل (اكشش اترى)" بهوسيلء سيال متحركك وجود ندارد، و سرعت منتجه فقط مجموع نسبيتى سرعت نور در مايع و سرعت جريان مايع در لوله است.
نتيجهُ مهم ديگرى كه از مكانيكك نسبيتى بهدست مى آيد، اين است كه جـرم يكك ذرهٌ متحركك، آنطور كه در دستگاه نيو تنى ثابت است، در اينجا ثابت نـيست؛ بـلكه بـا سرعت روبه فزونى در افزايش است. ضريبى كه بر جرم اجسام متحركك تأثير مىكند همان

○ MIT سرگذشت فيزيك
v است كه بر انقباض طول و انبساط زمان اثر مىكند، و جرم يك جسم متحركك با سرعت از عبارات زير بهدست مى آيد:

$$
m=\frac{m_{\circ}}{\sqrt{1-\frac{v^{r}}{c^{\gamma}}}}
$$

كهدر آن •m (اجرم سكون) نام دارد؛ يعنى مقاومت لختى در برابر نيرويى كه مى خواهد

 يك جسم مادى و رساندن سرعت آن به سرعت نور بينهايت مى شو دور.
برابرى جرم - انرڭى

با كنار گذاشتن مفهوم اتر جهانى و بازگشت به فضاى ميان سيارهاى در حالت خلاء

YIY O انقلاب نسيتى
به همين نحو اشعأ نور بايد به عنوان روانئ مر تعشى از اين ماده تصور شود كه از اجسـام

 9 - 9 - مصور شده است. در حالى كه يش از ازين فرض شده بو بود كه اتر جهانى به صورت

 درجاهايى وجود دارد كه در آنجا نيروهاى برقى و مغناطيسى وجود دارند وند و به آن اندازه

شكل 9 - 9
 اكنون ما عفيده داريم كه ميدان برقاطيسى موجرديتى است فيزيكى (داراى رزن) كه در نغس خود در نضاى خالى وجود دارد د. كه اين نيروها خودشان حامل آنها هستند، اين ماده حامل آنها نيست. خواص فيزيحى اين ماده نبايد بهوسيلهُ اصطل(حات قديمى از قبيل سختايى، كشسانى و غيره توصيف شود كه فقط به اجسامى مادى تعلى مىگیرد كه از اتمها و مولكو لها ساخته شــدهانــد، بـلكه بـايد بهوسيلهُ معادلات مكسول توصيف شود كه مشروحاً اعمال متقابل را توصيف مىكند. اين

نظرية جديد به مقدارى فرصت و كوشش نياز دارد تا بذيرفته شود، ولى خيال انسان را از

 معينى بر آينه وارد مىكند، ولى اين فشار آن اندازه قوى نيست كه آينهاى راكي راكه در مقابل

 در آزمايشگاه ثابت كرد و نشان داد كه مقدار عددى آن مساوى است با با دو برابر مـقدار

انعكاس روانٔ آب از يكت تختء متحرك (الف)، و انعكاس يكث يرْتو نرر از يكت آينء منحرك (ب)
انرزیى انعكاس يافته تقسيم بر سرعت نور.

انقلاب نسبيتى O 19
يك تشبي مكانيكى بسيار نزديك با فشار وارد از يك هيرتو نـور مـنعكس از يك آينه، فشار وارد از يكت روانهٔ Tب است از لوله آبِشى كه روبه تختهاى است كه در مسير آن قرار دارد (شكل • 1 - ج). بنابر قوانين مكانيكك كلاسيك فشار وارد از روزنهاى از ذرات مادى بر ديوارى كه از آن منعكس مىشوند، برابر است با ميزان تغيير گشتاور آنها يا „مقدار حركت)" در اصطالاحگذارى نيوتنى (فصل جهارم). آگر m جرم آبى باشد كه روانه در واحد زمان انتقال مىدهد و v سرعت روانه باشد، تغير گشتاور mvاست. زيرا تغييرات
آن از mv + به mv - است [بديهى است كه mv-(- mv) = Ymv

اگر همين استدلال را در باره پرتو نورى به كـار بـريم كـه از يكـ آيـنه مـنعكس
 حاصلضرب (اجرم نور) mهك در واحد زمان بر آينه مى تابد در سرعت نور c. بنابراين فشار نور را چنين مىنويسيم. P نور = Ymc

با مقايسه اين عبارت با رابطة اختبارى

$$
P \text { نور }=\frac{Y E}{c}
$$

كه در بالا بيان شد، به اين نتيجه مىرسيم كه

$$
m=\frac{E}{c^{r}}\left\llcorner E=m c^{r}\right.
$$

اين (اقانون برابرى جرم - انرزّى) معروف اينشتين است كه انرزّى تابشى (ابىوزن) فيزيكى كلاسيكك را با مادهٔ معمولى وزندار برابر مى سازد. جرم مقادير محسوسى از انرزیى تابشى با واحدهاى معمولى بيان شود و چون cr عدد بسيار بزرگى است، بسيار كو جیك
 نشر میكند، به اندازهٔ

مرگّشت فيزيك
آنكه جرم ميدانى كه يك كرئ مسى به قطر يكت متر و بار شده به بָتانسيل KV آ

 مبناى كشف نيتروگليسيرين توسط نوبل يا اختراع ماشين بخار توسط وات وات بوده است. در

 جوب كمتر از وزن چوب اصلى است. اما در همهٔ اين حالات وزن انرزّى آزاد شدها

 ليوان آب سرد شود. و هيج شيميدانى هرگز
 در مورد فعل و انفعالات هستهاى مقادير انرزّى حاصل خيلى بيشتر است و، با با آنكه

 مى توان بهوسيلة روشهاى دقيق آزمونهاى هستهاى مقادير جرمى اتمهاى فردى و تفاوت

انقلاب نسبيتى OY O

ميان جرمهاى اتمهاى وارد در يك فعل و انفعال هستهاى و جرمهاى اتمهـاى حـاصل از آنرا معين كرد. اما همةٔ اين مقادير فقط همان تفاوتى است كه در دقت در اندازه گـيريها

 علمى اينشتين، طرح مانهاتن را دربارة ساختن بمب اتمى به جريان اندي انداخت.

 مى كنند، به صورت تابش پر بسامد آزاد مى شو د.

جهان چهار بعلى

انقباض فضاى نسبيتى از لحاظ رياضى معادل است با انقباض فيترجـرالدى اجسـام متحرك. اما در حالى كه فيتزجرالد ايـن انقبـاض را هــيجون يكك اثـر فيزيكى واقعى

 مى شوند. انقباض فضايى و انبساط زمانى، هر دو، نسبت به دو دستگاه متحرك بك با يكديگر قرينهاند. هر جا كه مسافتهاى فضايى منقضض مى وشود، فواصل زمانى كشيده میى مشود كه از از جهتى شبيه است به حالت تصاوير عمودى و افقى تيركى با طول معين L . ا اگر تـيرك

 زاويهُ معينى قرار گرفته باشد، تصاوير عمودى و افقى هر دو با صفر تفاوت دارند.

> اما زاوئ θ هر جه باشد، قضيئ فيثاغورس جنين مىدهد: $\Delta x^{\gamma}+\Delta y^{\gamma}=L^{r}$

 ما، در زندگى روزمره́ خودمان، وتايع گوناگون را از روى مكان و و زمان مشخص

 است كه نوودارهايى نيز ترسيم كنيم كه در آنها موضع نسبت به زمان نـان نشان داده شده اسه است.
 نشان مىدهد جندان فرقى ندارد، حيزى نيستند جز نمايش بستگى ميان دو مقدار وار وابسته و
 همجون بعد جهارمى بهشمار آيد، نخست بايد در همان واحـيا واحدهايى اندازهگيرى شود كه سه بعد فضايى ديگر در آنها اندازه گيرى مى موند. آين كار كار مى تواند حنين صورت گيرد كه زمان، كه بر حسب ثانيه داده شده است، در سرعت استاندهى ضرب شو شود كه حاصليّ راصلضرب
 دلخواهى از قبيل سرعت حد در شاهراهها (كه بستگى به مقررات محلى دارد دارد) يـا حــــى سرعت صوت (كه بستگى به ماده و دما دار د)، نامعقول بايد باشد. بهترين انتخاب سراه سرعت نور، آشكارا، در خلاء خواهد بود كه ظاهراً به توانين اساسى طبيعت پييوستگى دارده، و

انقلاب نسيتى OHY OTH

آزادانه با يكديگر تعويض مىشوند. و درازاى يكك قوطى جوبى تـبديل بـه ارتفـاع آن
 يذيرى نمى تواند در مورد زمان و مختصات فضايى وجود داشته باشد. در ايـن مـورت
 زمان را همجون بعد جهارم بشمار آوريم نه فقط بايد آنرا در C ضرب كنيم، بلكه بايد در عامل ديگرى نيز ضرب كنيم كه، بدون آنكه هماهنگى مختصات جهار بعدى را را آشفته

 داده مىشود. يك (اواحد موهوم) جذر علد ا ـ است. $i=\sqrt{-1}$
 مثبت و منفى ندارد و، در نتيجه، واحد موهوم خوانده مىشود، هيج مورد استفادهایى در
 يك ريال در حساب جارى شما در بانكك موجود است و وارداشتن ((1 -) ريال، يعنى يك ريال در بدهكارى حساب جارى شما موجود است، iا ريال اصلاً مفهومى در حساب بانكى ندارد.
اما دانشمندان علوم فيزيك نظرى و رياضى به كار بردن i را در محاسبات خود بسيار

 است كه در آن محورهاى مختصات x و y در سطح افق (نسبت بـه خـوانـنده) و مـحور

موهوم زمان در امتداد عمودى است. هر نقطه از اين نمودار، واقعهاى را نمايش مىدهد؛

 عمود بر محور زمان نمايش داده شدهاند. وقايعى كه در زمانهاى مختلف، ولى ولى در يكايكا،

 مربوط است به روشنائى جسمى كه بهوسيلةً اين نور روشن شده است و در جاى ديگرى در فضا قرار دارد.
rra O انقلاب نسبيتى
جنانكه يسش از اين بحث شد، مشاهدات فاصلههاى فضايى و زمانى از يك دستگاه متحركك مىتواند از طريق هندسى همجون دوران يك مقطع مختصات جهار بعدى تعبير

 باشد. پس مىتوان دو نوع متمايز ازوج وقايع) تشخيص داد 1 - و قايعى جون E F E كه براى آنها زاوية بين خط EF 1 رابطه بين آنها و محور
 متحركى نسبت به دستگاه اصلى بيابيم كه سرعت آن حنا

 كيلومتر از شهر اول فاصله دارد، بايد بلافاصله بس از از پايان بازی اور اول با با اتومبيل راه بيفتيم تا

 بتوانيم در مهمانى ناهارى كه ساعت 1 در عطارد داده مىشود شركت كنيم و در ساعت هـ هـ
 سرعت خاصى براى مسافرت اختيار كنيم تا اختلاف زمان ميان ميان دو واقعه صفر شود، و هر
 (ززوج وقايع) را فضا ماند ناميدماند، جون با حركت كردن بهطرز خاصى مىتوانيانيم اختلاف زمان ميان آن دو را به صفر برسانيم.

 كنيم، اما نمىتوانيم تحت تأثير آنها قرار گيريم. به همين نحو تمام وقايع قسمت تحتانى

 كوجكك مىشود و قسمتهاى فوقانى و تحتانى مخروط نورى، رفتر رفته رفته كه فضاى ميان آنها
 روزمره با سرعتهاى نسبتاً صرفنظر كردنى نسبت به سرعت نور مشاهده مى كنيم.

PYY O انقلاب نسبيتى
اكنون، با بازگشت به فضاى سه بعدى و وارد كردن مختصات Z و مىتوانيم نيرنگى رياضى به كار ببريم كه در عبارت مربوط به بعد جهارم شامل (اواحد موهوم" باشل. فرض
 فرستادهايم. در زمان t علامت نورانى به موضعى با مختصات فضايى X, y, Z مىرسد، و مسافت آن تا مبدأ، بنابر قضيةُ فيثاغورس، مساوى خواهد بود با

$$
\sqrt{x^{r}+y^{r}+z^{r}}
$$

هون نور هميشه با سرعت C منتش مىشود، اين مسافت بايل مساوى با ct باشل و مىتوانيم

$$
\begin{gather*}
\sqrt{x^{r}+y^{r}+z^{r}}=c t \\
x^{r}+y^{r}+z^{r}=(c t)^{r} \tag{يا}\\
x^{r}+y^{r}+z^{r}-(c t)^{r}= \tag{يا}
\end{gather*}
$$

اما هون

$$
x^{r}+y^{r}+z^{r}+(i c t)^{r}=
$$

كه طرف حی TT م مجموع فيثاغورسى خهار مختصهات فضايى است. در دستگاه مختصصاتى بعدى كه نسبت به دستگاه مختصات اوليه در حركت است، خواهيم داشت

$$
x^{\prime r}+y^{\prime r}+z^{\prime r}+\left(i c t^{\prime}\right)^{r}=
$$

بهطورى كه مجموع جهار مجذور، به عـلت دوران دستگـاه مختصـات بـعلى، تـغييرى نمىكند. با استفاده از تبديلات لورنتس مىتوان نشان داد كـه هــين مـوضوع، در مـورد جدايى فضايى و زمانى هر دو نقطه در نمايش فضايى دو واقعه (X, y, Z, ict)، درست است. بنابراين عبارت ${ }^{\text {از }}{ }^{r}+y^{r}+z^{r}+(i c t)^{r}$ دستگــاه مختصــاتى دو واتـعه مشاهده لايتغير (تغيرنايذير) است. جداييهاى فضايى سه بعدى و جــاليـى زمـانى يكك بعدى تغيير خواهند كرد، ولى جدايى جهار بعدى آنهاكه از عبارت فوق بهدست مى آيد6 هميشه، ثابت باقى مىماند. در نتيجه، با به كار بردن ict به عنوان بعد جهارم، يكك اتحـاد رياضى ميان فضا و زمان (جا و گّاه) برترار ساختهايمّ و مىتوانيم همهُ وقايع فـيزيكى را

O MrA
همجون وقايعى كه در جهان جهار بعدى جاگاه روى مىدهد به بهمار آوريم. با همة اينها

 درست يك جيز نيستند.

نظريهٔ نسبيتى گَانش
 گاليله، درباره آزمايشهاى مكانيكى انجام يانته در اتاقك يك كشتى باكي بادبانى آرام، بهشمار

 تند شونده و نيروهاى جاذبه بهصورت رازى باقى باقى بود.
 مسدودى، كه آزادانه در فضاى ميان ستارگان شناور است، صورت انی تيرد.

 كف آن نصب است، داشته باشد، اوضاع و احوال در درون اتاق كاملاً متفاوت خور خراهد بود؛ همةٔ اجسام جنان به كف اتاق فشرده مىشوند كه گويى يكت نيروى گرانشى آنها را وا فرو مىكشد. مردى را در نظر بگيريم كه بر كف حنين آزمـايشگاه فضـايى مـتحركى بـا شتـابـ يكنواخت a ايستاده است، و در دستش دو كره يكى سنگين و ديگرى سبك قرار دارد. به

انقلاب نسيتى O YYq

 حركت موشكك تندشونده است، ييوسته سرعت مى گيرد و كف اتاق به دو كره مىرسد و در يكك لحظه به هر دوى آنها اصابت مىكند. يس از اين برخور رد، كرهها بر كف اتاق قرار

 نتيجه، در يكك زمان به كف اتاق برمى خور رند. همين برابرى ميان جاذبه و ششتاب است كه موضوع اطلاعات عمومى در (اعصر فضايى)، است؛ عصرى كه در آن به سر مى بريم.

آزمايش نورى در سفينه موشكى تندشونده كه اشاره به اين مىكندكه اشعئ نور بايد بهوسبله ميدان گرانش منحرف شود.

- ○ ○ مرگذشت فيزيك

آيا اين تشابه ميان پديدههاى مكانيكى كه در درون سفينهاى تندشونده و در ميدان جاذبةٔ توليد شده بهوسيلء جرم عظيم كره́ زمين روى مىدهده صرفاً تصادفى است يا آنكه
 درست است، و از خــود يــرسيد كــه در ايـن حـالت يكت شعـاع نـور در درون يكـ اتاق تندشونده جگگونه رفتار مىكند. فرض كنيم فلاشى به ديوار اتاق نصب شــد هيتوى از نور به اتاق مىفرستد. براى مشاهدهٔ عبور هرتو نور؛ مىتوان تعدادى صفحههایى
 حركت اتاق تندشونده نباشد، بديهى است نقاطى كه در آن نقاط برتو نـور صفحههـاى
 بگويم موشكف، مشالً نسبت به ستارگان ثابت، در حال سكون است يا در در حـال حـركت يكنواخت. اما اگر اتاق با شتاب يكنواخت a حركت كند، اوخاع متفاوت خواهـد بـو درد مدت لازم براى آنكه نور به صفحههاى شيشهاى اول و دوم و سوم و... غيره برسد، بـه

 مى مند. بنابراين آثار هرتو نور بر صفحههاى شيشهاى فلوئورسان، يكك شلجمى را تشكيل
 جاذبةٔ ثقل به پديدههاى برقاطيسى بسط داده شود، اشعه نور نيز بايد بهو سيلةً ميدان گرانشى خم شود؛ با همة اينها، به علت سرعت بسيار زياد نور، خمش آن در ميدان گرانش زمين

 جنين شتاب ثقلى بر سطح زمين حدود cm/s است، و تغيير مكان قائم چرتو نور بر هرده بايد جنين باشد:

$$
\frac{1}{r} \times 1 \cdot r \times(1 \cdot-r)^{r}=\Delta \times 1 \cdot-1 r \mathrm{~cm}
$$

كه در حدود قطر هستهٔ اتمى است!

انقلاب نسيتى O OH Y

با همئ اينها اينشتين دريافت كه وقتى اشعهٔ نور از نزديكى سطح خورشيد مى گذردر، انحراف قابل توجهى از او انتظار مىرود. اينك، يكك محاسبءٔ تقريبى از اين انحراف ميكّ مورد

 ($\mathrm{7} \times 1.1 \mathrm{~cm}$)

$$
\frac{r / V \times 1 \cdot \wedge \times Y \times 1 \cdot r r}{(Y \times 1 \cdot 10)^{r}}=r \times 1 \cdot{ }^{F} \mathrm{~cm} / \mathrm{s}^{r}
$$

 است، و مدت لازم برای يميودن آن آ نور به اندازء وم انحراف جنين خواهد بود:
$r / v \times 1 \cdot{ }^{0}=7 \times 1 \cdot{ }^{-7}$
يا تقريباً يك ثانية زاويهاى.'
روحاسبات صحيحتر براى تعيين مقدار انحراف شعاع نورى كـه قـرص خـور
 مى توان در هنگام يكت كسوف كلى ديل، هيتى از منجمان بريتانيايى، در سال افريقا سفر كردند، زيرا يسبينى شده بود كه در آنجا كسـوفى روى مـىدههد. (منجمـان

 و جيزهاى ديگرى كه نظرية نسبيت را تأيد كردهاند، بدون ترديد وجيا وجود رابطهاى را ميان يديدههايى ثابت مىكنند كه در ميدانهـاى گـرانشـى و در دستگـامهاى تـندشونده روى ريـى

○

گرانش و انحناى فضا
 منحنى در دستگاه سه بعدى تا حدى تصور لازم است. مشكل درك مفهوم فضاى منحنى

 ديگر، بدون آنكه از روى سطح بيرون بروند؟ البته، ياسخ حنين است كه اين موجودات
 شكل
 اگر سطع مستوى باشد (الف)، قضاياى هندسء مسطحهُ اقليدسى صـئى

 (ج)، اوضاع و احوال متفاوت است و مجموع سه زاويه كوجكتر است از • •1 درجـهـ.

انقلاب نسبيتى ○ سشץ

رسم بر اين است كه به يكك سطح كروى انحناى مبّت، و به يك سطح زينى انحناى منفى نسبت داده شود.

انواع سطرح منحنى (در بعدى). (الف) سطع مستوى: انحناى صفر. (ب) سطح كروى: انحناى مبتت. (ج) سطع زينى: انتخاى
 باشند

اين نتايج را مىتوانيم به فضاى سه بعدى نيز گسترش دهيم و بگوييم كه فضا يا تخت است يا يكك انحناى مشبت دارد يا يك انحناى منفى؛ بسته به اينكه مجموع زواياى مثلث
 آزمايش مثلث بندى بزرگك مقياس را در نظر بگـيريم كـه در آن سـه مـنجم مـجهز بـهـ زاويهياب، هريكك در سطح زمين، در زهره، و در مريخ قرار گرفتهاند و سه زاويهُ مثلث
 ميدان گرانشى خورشيد (كه انحناى آن روبه جسم گراييده است) منحرف مىشود، سـه

 بنابراين، منجمان ما نتيجه خواهند گرفت كه فضاى اطراف خور خور خيد منحنى است و انحناى آن مشبت است. اگر اين اندازهگيرى در سيارات مشترى، زحل، و اورانوس، كه نسبت به

 خورشيد برحسب فاصله آن تا خورشيد كاهش مىيابد. به تعبير و تفسير خنين اندازه گيريى مى توان اين ايراد را وارد كرد كه آنحه منجمان اندازه گيرى كردهاند واقعاً مثلثى منظم نبوده

است؛ زيرا اضلاع آن خطوط مستقيمى نيستند. اما خط مستقيم چيست؟

7- IF شكل
مثث بندى نضاى اطراف خررشيد
 انتشار نور در فضاى تهى است! مى توان خط مستقيم را (اكو تاهترين فاصلةٔ ميان دو نقطه")

 بريدهاى كه در شكل نشان داده شده است هيج مفهوم فيزيكى ندارند. بـرا بـراى اجتنـاب از
 مسطحه اختصاص داده شده است؛ حال آنكه بر روى يك سط سطح منحنى و در يك يك فضاى

 استفاده مىكنيم. در اينجا ممكن است متوجه شويم كه در هندسءٔ كروى ايـن بيـان كـهنه

انقلاب نسبيتى ○ هYM

هندسه اقليدسى، كه (اخطوط متوازى هرگز يكديگر را تلاقى نمى كنند)، ديگ, اعتبارى ندارد. زيرا هر دو دايره عظيمه، هميشه يكديگر را در دو نقطه قطع مى مكنتد و دو دو هوايميا كه از دو نقطهُ استوا در امتدادهاى عمود بر بر استوا به راه مى افتند و بدون ري آنكه مسير خود را

 ساخت. اگر يك گلوله بيليارد رابر روى يك ميز افي افقى تخت بغلتانيم واضح است كه بر بر

 نخواهيم شد. و گمان خواهيم كرد نيرويى وجي اني
 خورشيد مى تواند يا ممجون نيرويى تعبير شود كه بر آنها وارد مى آيد؛ يا همحون انحناى فضا در مجاورت اجرام بزرگت.

 قسمت يش مورد بحث قرار گرفت. با اين تفاوت كه در اينجا به جاى ششتاب خطى (يعنى تغير مقدار عددى سرعت بدون تغير امتداد) ، يك شتاب دور دورانى (تغيير امتداد سرعت

 تأثير قوهاى مركز گريز قرار خواهند تُ ترا است اين را نيروى ثقل خاصى تعيير كنند كه بيشتر جنبهُ دافعه دارد تا جاذبه. تشبيه با نيروى

ثقل بهوسيلة اين واقعيت، وقتى شدت مى يابد كه يكى از كسانى كه محكم بر بر روى درى سكو

 كسانى كه بر روى سكو هستند فيزيكدانانى كار آزمودهاند و همئ استدلالهايى را را كه قبلاً

 نقاط A و بر خطى حنان به هم متصل كند كه حداقل ميلهما رابه كار بيرد. اگر سكو دوار

مطالعات مندسى بر روى بك سكوى دوار

YYY O انقلاب نسيتى

نبود، بهترين راه برای اين كار خط بريدهاى بود كه در شكل نشان داده شــده است. امـا، درحالت دوار بودن سكو اوضاع و احوال تغيير مىكند. اكنون ميلدهاى ديگر در در امـتدار دراد

 وسطى درست در امتداد طول خود حركت مىكند و حداكثر انقباض فيترجرالدى بر آن

 ميلههاى جوبى راخواهد بيمود.

 طول خود حركت مىىكند و بدون آنكه طولشان تغيير كند نازكتر مىشيوند، ميلههايى كه

توسط شمارهٔ F به كار مىروند تحت تأثير انقباض فيتزجرالدى قرار خواهند گـرفت، و
 روى سكو اندازهگيرى مىشود، بزرگتر از رقم معمول است، بهدست خواهد آمد. اين نتيجه نيز، نتيجه گيرى مربيوط بـي به انحناى منفى فضا را تأيد مىكند.
براى مدت كو تاهى به سطوح منحنى دو بعدى بازگرديم و بيينيم كه اگر دور دوايرى بر
 است (مدارات)، ناميده شده است، و آشكار است كه نسبت طول يك مدار بــه قـطر آن
 صفرم) تقسيم بر طول نصفالنهار نقط Y است. طول مدارها ها خيلى كندتر از از شعاعشان، كه

 غيره افزوده مى شوند. بر روى "سطح زمين "، اوضاع و و احوال مخالفى وجود دار دارد كه در

 يك آزمايشگاه دوار يك انحناى منفى نسبت بدهيم.

 اين موضوع مبنايى را فراهم مىكند براى زمينٔ كار جالبى در مبحث نجوم كه توسط ادوين

انقلاب نسبيتى O OYq

 آورد متضاد و بى ثمر بود. اميدواريمكه تكرار "شمارشهاى كيهانى " هابل با وسايل رصدى بهتر، به باسخ اين مسئله ههم كيهانى برسد. با توجه به ملاحظات مشروح فوق، اينشتين نظريهاى بنياد گذارد كه، بنابر آن، هــئ اعمال متقابل گرانشى بايد همجون اعمالى مربوط به انحناى فضا تفسير شوند. خوشبانتانتانه

 از آن بحث شد. با ارتباط دادن "تنسور انحنايى " محيط بيوستئ جاكاه باه به توزيع و حر حركت (اين فرمول اسـاسى در زيـر تصوير ايـنشتين در شكـل 1 - 9 آمـده است)، ايـنشتين
 محاسبات دقيقتر نشان داد كه بايد انحرافات كوجكى نسبت به نظريئ اصلى جـاذئ نـئ نـيوتن وجود داشته باشد، و كشف همين انحرافات است كه تفوق نظريههاى آلبرت [إينشتين] را
 مسير نور است در ميدان گرانشى، سابقاً مورد بحث قرار گرفت. نكتئ مهم ديگر مـربوط

سرگذشت فيزيك
است به حركت سيارات بر گرد خورشيد. نيوتن نشان داده بـود كـه، بنـابر قـانون جـاذبة

 خطوطى كه "تاريخجهٔ حركت" هر جسم مادى را در جهان نشان مىدهد و بـه "خـطوط
 بر اساس نظرية نسبيت ميدان گرانش محاسبه شود. در شكل 17 - 17 يك نمايش نمودارى از خط جهـانى حـركت زمـين بر گرد

 مجاورت خورشيد منحنى است، و خط جهانى زمين مربوط است بـه مستقيمترين خـي (زئودزيك) در اين فضاى منحنى. بنابراين، خط ABCD كو اوتاهترين فاصلة ميان دو نقط؛
 زمين است بر گرد خورشيد. اما محاسبات صحيح نشان داده است كه اين بيضى، هنـانكه
 اندازء زاويهٔ كوحكى در طى هر دوران مى میرخــد. در مـورد مــدار عطـارد، كـه خـيلى

 مدتها يش از تولد اينشتين محاسبه كرده بودند كه محور اصـلى مــدار عطـارد بــه عـلت
 اختلافى ميان محاسبات و مشاهدات وجود داشت كه مقدار, آن به قرن مىرسيد، و توضيح آن ممكن نبود. نظريهٔ نسبيت اينشتين اين اشكال را با برطرف كرد ور و و بر نظريه كهنة نيوتن غلبه يافت.

YYI O انقلاب نسيتى

مسافت نيست.

نظريهٔ ميلان يكنواخت

حاصل زندگى آلبرت اينشتين، هندسى ساختن قسمت اعظم علم فيزيك بود. زمان6 جهارمين رفيق مشروع سه مختصات فضايى شد (جز از لحاظ ضريب i)، و نيروهاى جاذبه وابسته به انحناى اين جهان جهار بعدى گشت. اما نيروهاى برقى و مغناطيسى هنوز خارج از حيطة تصرف هندسى باقى مانده بودند، و اينشتين كه تا اين اندازه يسرفت كريده بود تمار تمام نيروى خود را متو جه اين ساخت كه بر ميدان برقاطيسى سركش نـيز يكك مهـار سـخت هندسى بزند. كدام خاصيت تاكنون كشف نشدهُ هندسى فضاى چهـار بـعدى هسبت كــه
 علاقهمند " از قبيل رياضيدان مشهور آلمانى، هرمان ويل و"، نهايت كوشش خود بردند كه به ميدان برقاطيسى تعبيرى صرفاً هـندسى بــدهند. امـا مـولود ويليـام كـلاركك

مكسول، يعنى ميدان برقاطيسى، با سماجت اسكاتلندى خود از هندسى شـدن سـريّحیى
 "ميدان يكنواخت"، يعنى نظريهاى كه ميدانهاى برقاطيسى و گرانشى را بر مبناى هـندسى واحد متحد مى ساخت، كار كرد. اما، با گذشت زمان اين وظيفه دشوارتـر و و نـوميدانــتر

 طبيعت نمى تواند كارى انجام دهد كه با مذاقش ساز گار نيست. از طرف ديگر عـر علم فيزيك

 از مدارس دخترانه شمال انگگلستان ايراد كرد. (تخته سياهى كه فرمولهايش را را بر آن نوشته، با همان فرمولها توسط مقامات مدرسه نگاهدارى شده است.) اماكا از سخنرانى در دانشاءاه
 شد. اما، حالاكى علمى وى به همان شدت سابق باقى مانده بود. وقتى كه مؤلف اين كتاب،
 همان انسان جذاب سابق يافت. كاغذ پارههاى سياه شده از فرمولهاى پـيحییده و در هـمّ،

انقلاب نسبيتى \bigcirc
ظاهراً مربوط به نظريهٔ ميدان يكنواخت، بر روى ميزش هراكـنده بـود. امـا، ايـنشتين بـه هيجوجه درباره́ آنها صحبت نمىكرد. او اكنون6 به يقين6 در بهشت به سر مىبرد، و بايل دانسته باشد كه آيا نظرش در باره́ هندسى كردن تمام فيزيكك درست بوده است يا نه.

قانون كوانتوم

تقسيمهِذيرى ماده

بسيارى از مردم مىدانند كه اتـم (در زبـان يونـانى بـه معنـاى تقسيمنـإنـير)، زادء فكـر

 سنگ؛، آب، هوا، و آتش - و عقيده داشت كه انواع اجسام شنـاخته شـده، از تركيبـات

 ساختمان درونى يِجيدهاى دارند. اما نظريه ذيمقراطيس، دربارئ ماهيت نهايى، اكنون به

ذرات كو حككرى منتقل شده است كه ساختمان درونى اتمها را تشكيل مىدهند، و مى توان

 هيزى بهنظر میرسد كه بتواند دربارهٔ اتم گفته شود.

تراشهاى خارج از اتم كهنسال

در اواخر قرن نوزدهم، توجه دانشمندان به عبور برق از گازها معا مطوف شد. قرنها بود

 تا آذرخش شديد طوفانهاى تندرى وجود دارد. اما سر ويليام كروكس، كه كمكهايش به

قانون كوانتوم YY O

علم تا اندازهاى به واسطهُ عقيدهاش به روحيگرى r و مابعدالطبيعه" محو شده است، نشان داد كه عبور جريان برق از گاز، اگر فشار گاز به جزئى از يك اتم اتمسفر تقليل يابد، به نحو بسيار مسالدتآميزترى صورت خواهد گرفت. لولههاى كروكس، با نور مــلايمى بــه آن آن رنگى برافروخته مى شدند كه بستگى به جنس گاز داشت، و هنوز هـو هم در خر خيابانها و هتلها و

 مىشود كه از يك كاتود به يك آن آنود برمى ارخورد و، اگر فيز فيزيكدان شيطانى آنود را از سر

 يونهاى فاراده در فرايند الككروليز در مايعات، حركت مى ركنند. البته تفاوت اساسى در در اير اين

 به هر هيزى كه در مسيرش بود اصابت ميكرد.
اين نظريهها مورد مخالفت فيزيكدان معروف آلمانى، فيليب لنارده، قرار گرفت. او

2) spiritism	3) metaphysics	4) Jean Perrin
5) Philipp Lenard		

يقين، آنرا انجام مىدهد. لنارد حنين استدلال كرد كه فقط امواج مىتوانند حنين كند الند نه

 ضعيف مىنمايد. اما در زمانى كه اين استدلال بيان شده، بسيار متين مىنمود. وظيفهُ حل تضادهاى تجربى، براى اثبات اينكه اشعهٔ كاتوديك روانيانى روانههايى از ذرات هستند و يافتن مشخصات اين ذرات، از طرف شوراى عالى يسشرفت علم به جوزف جان
 فيزيكدان متولد منجستر بود و، در آن زمان، حهل ساله و رئيس آزمايشگاه كونديش در
 و بار الكتريكى آنها را اندازه بغيرد. يكى از منابع اطلاعاتى دربارئ اين مقادير، انحران ان

 بنابراين بااندازه گرفتن هر دو انحراف و تركيب كـردن نتـايج، تـامسن تـوانست سـر انــيرع
 حتانسيل الكتريكى دارد كه بر لوله وارد مىشود،

$$
\Delta / Y \Lambda_{x} \left\lvert\, \cdot{ }^{\vee} \frac{\text { esu }}{g r}\right.
$$

 ابتدايى دارد و توسط فاراده در آزمايشهايش با الكتروليز مايعات بيدا شد، تامسن آزيا ريايش خاصى براى اندازهگيرى اين مقدار يونهاى گازى انجام داد. روش وى مبتى بود بر كشثف

ث4Q O

فيزيكدان ديگرى از كونديش، به نام ويلسن، كه دريافت اگر هواى بیگرد و غبار اشباع

 بخار آب برای انبساطهاى بزرگتر هم بر يونهاى مثبت متراكم می مشود و و هم

 صورت مه، بهوسيلٔ تراكم آب بر يونهاى مثبت، در اتاق نمايان مى مونود. مه، به آرامى، بر بر

 تعداد كل قطرات توليد شده يا تعداد كل يونها را، كه همان مقدار است، يِداكرد. تامسن

[^0] آزمايش مىشود.

Yal O قانون كوانتوم
تعداد كل قطرات توليد شده يا تعلاد كل يونها را، كه همان مقدار است، يِداكرد. تامسن

 / است همان مقدارى كه در مورد الكتروليز مايعات است. حالا ديگر تامسن مى توانست مقدار m را از m m

جرم اتم هيدروزن.

 تصور كرد با الككرونهاى بسيار خرد فراوانى كه، مثل تخمههايى كه درون هندوانـي انه است،

 برای ارتباط دادن بسامدهاى هييتتهاى الكترونى مختلف با خـط طـيفى مـيفى مشـهود عنـاصر
 راذرفرد همجنان حل نشده باقى ماند.

اشعهُ مرموز ايكس

كشفيات مهمى در اواخر قرن نوزدهم صورت گرفت كه بسرعت علم فيزيك را را از صورت "رسمى" خود به صورت "مدرن" درآورد. اما ايـن كشفيـات هـميشه از طـر كـر

 نرفت. اما، يك صفحهُ فلزى اين اثر را بكلى از ميان برد. بنابراين، در اينجا تابشى از از لولي

 دست همسر خودش بود كه استخوانبندى و حلقه زناشويى او به وضوح دون در آن آن نمايان شد. مطالعات بعدى نشان داد كه اين تابش نافذ از انتهاى لولهٔ شيشهاى كه بر يرتو اشعهُ كاتوديك

 (شكل Y - Y). صدور اشعهُ ايكس مربوط به اصابت الكترونهاى تندروى است كه اشعئ

 عيناً مانند حالت گلوله كه صوت صادر شده هر گونه بسامدهاى مــمكن را دارد دارد و بـيشتر

قar O قانون كوانتوم
جون صدا توصيف مىشود تا آهنگك يكنواخت موسيقى، اشعهٔ ايكس نـيز مـخلوطى از

 اصطلاحات آلمانى ديگر، در انگليسى به كار مىرود. (البته، گفتن "تابش ترمزى " عجيب

جون اشعهٔ ايكس بهوسيله ميدان مغناطيسى منحرف نمى رشد، رونتگن از همان آغاز

 ماكس فون لاوئه از همان دانشگاه دعوت شد كه عكسهاى تازه گرفنه شدها

كند. با همان نظر اول كه به عكسها افكند، بى برد كه درست همان هيزى است كه سالها در جست و جويشان بوده است؛ تصويرهاى تفرقى زيباى حاصل بها بهوسيلهُ اشعهُ ايكسى كه از

 ايكس بر سطحى بلورين مىتابد به درون بلور فرو مىرود، و بر هـر لايـها

 آزمايشگاههاى شركت تلفن بل ترسيم شده است، تفرق اشعهُ ايكس را در آلياز نيكل آهن نشان مىدهد. بعدها كشف شد كه اشعهُ ايكس، علاوه بر "برمستراهـلونگگ "، مـحتوى رديـفى از خطوط مشخص نيز هست كه كاملاٍ شبيهند به طيف نورى، و از از انتقال الككرونى در درون اري
 و برگث (یسر) انجام گرفت، كه موفق به ايجاد روشهاى دقيق طيفنگارى اشعهُ ايكس شدند.

ايزوتوپپا يا "همجاها"

در آغاز قرن نوزدهم اين واقعيت كه مقدار وزنهاى اتمى عناصر مختلف، بر حسب
 انگليسى، يراوت '"، را جلب كرده بود. اين واقعيت وى رابه اين اين فرضيه رساند كه اتمهاى عناصر شيميايى مختلف جيزى نيستند جز تجمعى از تعداد مختلفى از اتمهاى ئيدروزن: هليوم پيراوت در اين مورد با وى همعقيده نبودند، و در بی آن شدند كه حقايقى را بيابند كه با

v-

فرضيهٔ متهورانهٔ براوت مغايرت داشته باشد. يكى از اينها مثلاً ايـنكه وزن اتـمى كـلور و كادميوم را به ترتيب

احيا شد.
 الكترونى در ميدانهاى برقى و مغناطيسى، تامسن توجه خويش را بـ به ذراتى معطوف كردي در جهت مخالف در لولههاى تخلئ برقى حركت مى مكنـى
 سوراخهايى (كانالهايى) در صفحؤ كاتود بود كه ذرات مى توانـانستند از آنها بیــنـرند و در در

 انحراف قائم يرتو در ميدان برتى متناسب است با با با به ميدان مغناطيسى به نسبت

YAY O قانون كوانتوم

v-ه شكل

دستگاه تامسن براى مطاله راثشعئ كانالى، : يونهاى مثبت از آ آنود رو به كاتود حركت مىكند از مجراهایى كى در كاتود كشبده
 مغناطيسى (در امنداد افقى) بستگى به سرعت ذرات دارد، در حالى كه انحران مغناطبسى (در امتداد قائم) بستگى به مجذرر سرعت دارد، ذرات همجرم كه با سرعتهاى متفارت حركت مىكنـد بر روى يكت شلجمى بر پرده توزيع خرامند شد. داراى يكت جرم هستنل ولى سرعت آنها متفاوت است، انحرافات قائم متــاسب است بـا مجذور انحرافات افقى؛ و منحنى مشهود بر پردهُ فلو ئورسان S بايل يكـ شلـجمى باشل.

仿 اتمى كلور است كه از راه شيميايى تخمين زده شده است. مطالعات بعدى توسط استن 「"،

سرگذشت فيزيك \bigcirc rDA

سازگار است. به اين ترتيب، نظريهَ قديمى پراوت اهميت خود را بازيافت. اما، حتى با كشَف همحجاها هم هنوز اختلافاتى باقى مانده بود. زيـراك، مـشالاً وزنهـاى اتـــمى درست دو همجـــاى كــــلور بـــه جـــاى •传 موضوع نه فقط زحمتى ايجاد نمىكند، بلكه موجب رضايت خاطر هم است. زيرا، بنـابر
 ذرات اوليه، به اندازه خارج قسمت انرزُى ييوستگى ميان آنها بر اينرو تفاوت ميان جرم يك اتم مركب و مجموع جرم اجزاى آن، حاكى از اين است كه

 است، حال Tنكه جرم يك نوترون هو باشد: Y ا اندازهگيريهاى دقيق، جرم صحيح اتم كـربن را (واحد كمتر، بهدست مىدهد. اين "كاهش جرمى " بايد جرم انرزيى را مشخص كند كه كه در تشكيل هستهٔ كربن از نوترونها و پروتونها آزاد شده است. بنابر نظرية اينشتين، اين مقدار

مدل اتمى راذرفرد

جنوبى نيوزيلند، به دنيا آمد، و وقتى سالها بعد، براى شـايستا

 منتقل گرديد و، در سال 91919، جس از كنارهگيرى تامسن رئيس آزمايشگاه كـونديش

 رابر ورقهاى نازكى از فلزات مختلف تاباند (V- V)، و تعداد آلفايى راكه هس از عبور از
14) Rutherford
15) Mc Gill

ورقها در جهات مختلف يراكنده مىشدند شمارش كرد. در آن روزها، شمـارش ذرات كارى دشوار بود. در حالى كه امروزه يكك فيزيكدان مى تواند يكـ شمارشير گايگُر^^ نصب كند و خود ميكروسكوب به پردهء فلوئورسانى كه در مسير پرتو قرار داشت نگاه كند، و با انگششتانش حشمكه هايى راكه بر پر ده مىديد بشمارد؛ يعنى برقهاى خفيفى كه هنگام ,

 درونى اتم هرگز آن اندازه قوى نيست كه يكك ذره آلفا را به اندازه زاويه بز بزرگى از از امتداد

قانون كوانتوم ○
اوليهاش منحرف كند؛ چه بر سد به اينكه آنرا به عقب باز گرداند. تنها توضيح مدكن اين

 از دانشمندانى كه فقط با آزمايش سروكار دارند، رياضيات راد دوست نداشا

تهيه كرد. تعداد ذرات آلفايى كه به اندازهٔ زاويئ θ از امتداد اولئّ حركت خـود مـنـحرف

 جديدى از اتم مشخص شد با يكك هستهٔ مركزى كوحك امك اما سنگين و بار دار، كه راذرفرد

آنرا هستٔٔ اتمى ناميد، و با گروهى الكترون كه تحت تأثير جـاذبهٔ كـولنى بـر گـرد آن

 بعدها دو تن از دانشجويان راذرفرد، گايگر و مارسدن معلوم كردند تعداد الكترونهايىى.كه

حادثهُ فوق بنفش

اكنون بايد اندكى به عقب، يغنى به آخرين دهؤ قرن نوزدهمه، بازگرديم؟ به دورما
 مى گذراند. در آن زمان نظريه حركتى حرارت را را بولتزمان و مكسول و و ديگّران كان كامل كردره

 معين توزيع معينى از انر زیى قابل استفاده وجود دارد كه ميان طول موجهاى مختلف است ور ور

قانون كوانتوم ○

 (ا ا . . ساختن آن جذب مىكند. اما، در اينجا، از يك " "آزمايش خيالى " سخن میى

 سوراخ باز يك لاستيكك اتو مبيل با سرعت خارج مى شور اسود.

 ديوارههاى آينه منعكس مىشوند.

 نقص در تشبيه از ميان برداشته شود، فرض مى كيكنيم كه درون قوطى جينز مـقدارى گـرد

زغال سنگك هم هست كه ممكن است مقدارى از انرزى يك طول موج را جذب و و آنرا

 فوق استفاده شده است كه تبادل انرزّى را ميان ارتعاشات نورى طول موجهـايى مـختلف

 اكنون بيينيم كه حگو

 متقابل آمارى باشند، انرزى قابل استفاده بهطور متوسط ميان آنها به تسا تساوى توزي
 هر مولكول مقدار متوسطى انرثى خواهد داشت كه حثنين است:

 (ي) $\frac{Y L}{9} 6$

F7A \bigcirc قانون كوانتوم

مقايسئ ميان حركت تصادفى و نامنظم مولكولهاى گاز در يك ظرف بسته (الف)، و حركت تصادفى امواج در توطى جينز (ب). نقطهماى سياه در (ب) ذرات ريز زغال را نشان مىدمد كه ممچون تبادل كندأ انرثى ميان امواج به كار مىروند. (ج) اشكال گوناگرن ارتعاثات رادر فوطى جينز نشان مىدمد (براى اختصار قوطى يكت بعدى)، در حالى كه (د) طيف مربوط را مىدمد.

برایى طول موج ارتعاشات برقاطيسى وجود ندارد، و اگر رديف بالا را ادامه دهيم از نور
 ارتعاشات ممكن بينهايت است و بديهى است اگر استدلال را به امواجى كه در سه امتداد

\quad باشلد، ميان همةٔ امواج ممكن، خواهيم داشت: \quad غ $=0$
∞

مفهوم فيزيكى اين فرمول جنين است: اگرَ تمام طول موجهاى مـمكن راكـه در (شكـل (V - 1

 فيزيك رسمى به انرزیى تابشى است.

 برابر تخته سياه قرار گرفت و يسشنهاد عجيبى كرد. طبق نظرئ او او هميشه نور و هر هر نوع تابش

 بسته بستگى دارد به بسامل ارتعاشى r ، و مستقيماً متتاسب است با با آن ؛ بهطورى كه مى توان

$$
\varepsilon=\mathrm{hr}
$$

نوشت:
كه در آن h مقدار ثابت جهانى است. يلانكك اين بستههاى انزرُى راكوانتوههاى نور (يا به

Y7Y \bigcirc قانون كوانتوم
اصطلاح عموميتر كوانتومهاى تابشى) ناميد، و مقدار ثابت h موسوم است به مقدار ثابت كوانتومى.

اكنون بيينيم كه نظريه ماكس حلانكک، جگگونه خطر حادثهُ فوق بنفش جينز را از ميان برمىدارد. براى آنكه خواننده اطلاعات مختصرى بهدست آورد درباره́ نحوه́ انجام اين كار، مى توان مردى را درنظر گرفت كه مرده و مثلاً 7 ريال ارث به بهجا گذاشته است.
 داروساز، دارد كه هريكك از آنان مى خواهد تمام موجودى متوفى را بـابت طـلب خـود بردارد. حون مجموع قروض متوفى خيلى بيش از ماتركك اوست؛ يكك راه حل ساده به كار

 خود را بگيرد يا اصلاً هيجِ مبلغى نگـيرد. اولى تمـام 7 ريـال را، دومـى و سـومى هركدام چول به اندازء كافى نيست كه طلب همه پرداخت شود، قاضى بايد به راهى متوسل شود كه
 ريال به قصاب داده شود، و به ديگر طلبكاران هيجِ مبلغى داده نشود. راه حل معقولتر ديگر آن است كه بول بيشتر به كسانى داده شود كه تقاضاى آنان كمتر است، و تقاضاى كسانى
 . Y . . .
 مى تواند فقط يكك راه حل به ما نشان بدهد. يكك بار كه فرضيةُ ماكس پالانكك مربوط به كمترين مقدار انرزّى در كوانتومهاى نورى طول موجهاى مختلف عرضه شــلـ، قـوانـين صستح آمارگيرى رياضى به كار افتاد و بسيارى از ارتعاشات با طول مول موج

○ MIA
توضيح انرزى در تابش حرارتى كه در آن قسمت عمدهُ انرزى به طول موجهاى متوسط داده شده است، در حاللى كه به ارتعاشاتى با طول موج كوتاه كـهـ يـر تـو قعند خـيلى كــم

انرزُى مىرسد يا اصلاً هيج نمىرسد.
 با تمام قوانين شناخته شدهُ تابش حرارتى سازگارى كامل دارد. اما عرضهٔ نظرئّ بستههاى انفرادى انرزى به صورت تصوير رسمى انتشار موجى نور، انقلابى در نظريهـه ها پـا كه فقط قابل مقايسه با انقلابى بود كه از آزمايش مايكلسن - مورلى نتيجه شده بود.

تانون كوانوم ○

واقعيت كوانتومهاى نور

درحالى كه مفهوم نظريهُ بلانكك دربارهٔ بستههاى انرزى تابشى تا اندازهاى مبهم بود و فقط به عنوان مبنايى براى توزيع آمارى انرزى ميان طول موجهاى مختلف دري در در طيف به

 الكتريكى منفى منتقل مىكند. بس از كشف الكتر الـورنها، ثابت شد كه اين تأثير مربوط است به دنع الكترونها از سطح روشن شده.
 نشان داده شده است. نور يك قوس الكتريكى A (كه شامل مقدار زيادى اشعهٔ فوق بنفش

 فوتوالكترونهاى صادر شده را كند مىكند. (باترى B و مقاومت R تانسيون الكتريكى را

 از مطالعات تجربى اثر فوتوالكتريكك دو قانون زير نتيجه مى شورد:

 كار مىروند و بسامدهاى آستانهاى افزايش مى يابد. اين دو قانون، به صورت نمودار، در شكل V - 11 نشان داده شده است. با هـمه اينها، اين قوانين ساده با يششگويهاى نظريهُ رسمى برقاطيسى نور اصلاً سازگار نبود.

 الكتريكى متونف مىشوند كه اختلان بِانـيل C , C , به اندازء كافى باشد.

بنابراين نظريه، افزايش شدت نور به معنى افزايش نيروى برقى نوسان كننده در موج استر است. وقتى كه اين نيروى برقى قويتر بر الكترونهاى نزديكك سطح فلز (اينها الكترونهايى هستند

 تابش نشان مىدهد - رابطهاى كه براى آن ظاهراً دليلى در نظرئّ برقاطيسى نور نبايد وجود

FYI O قانون كوانتوم
اما با به كار بردن نظرئُ كوانتومهاى نورى، كه حامل مقدار مشخصى انرزى متناسب با بسامد است، توخيح دو قانون اختبارى بـه راه كاملاً طبيعى بهدست مى آيد. وقتى كه يكى كوانتوم نورى بر سطح فلز مىتابد و با يكى از الكترونها درگير مىشود، بايد تمام انرزیى خود را به آن منتقل سازد؛ زيرا انرزيى كه كمتر از يكى كوانتوم انرزى باشد نـــى توانــد وجود داشته باشد. شدتى بيشتر براى نور تابش مفهومش كوانتومهاى نورى بيشترى با همان بسامل، و در نتيجه، به همان نسبت، الكترونهاى بيشترى با همان بسامل است. وقتى كه بسامد نور تابش افزايش مى يابد، اوضاع متفاوت مىگردد. اينك كوانتوم نورى انرزّى بـيشترى
 الكترونى كه به اين ترتيب از سطح فلز عبور میىكند، مقدارى از

الف شدّت نور

ب فراونى نور

$$
\text { v - } 11 \text { شكل }
$$

توانين اثر فر نوالكتريك كه از راه آزمابش بددست آمده است. (الف) بستغى تعداد نوتوالكترونها با شدت نر. (ب) بـر بـتغى انرثى فوتوالكتررنها به بـسامد نور
آن انرزى را كه از كوانتوم نور گرفته است از دست مىدهد؛ اين مقدار بستگى دارد بـه جنس فلز و (اعامل كار) ناميده شده است. بنابراين انـرزیى فوتوالكترون بـهوسيلهُ فـرمول بسيار سادهاى داده مىشود:

$$
\mathrm{E}=\mathbf{h} \nu-\mathbf{W}
$$

الكترونها به اندازءٔ كافى انرزى از كوانتومهاى نورى بهدست مى آورند تا بتواند از سطع
 فو توالكترونى آغاز مىشود، و انرزى الككرونها به نسبت خطى منحنى در شكل V - II ب، بايد برابر باشد با "ثابت كوانتوم"؛ و البته جنين هم هست! بنابراين اينشتين با يكت تكان اثر فوتوالككريك را را توضيح داد، و اساسى براى نظرية اصلى بالانكت درباره بستههاى انزرى تابشى استوار ساخت.

 تنسى، و محقق نامدارى در بررسى اشعها كيهانى بود. مطالعات وى دربارة اشعهُ كيهـانى،
 خود كامتن براى مؤلف، حنين است: براى مطالعهُ تغيرات در شدر شدت اشعؤ كيهانى از تطب

 مملو از وسايل و تجهيزات علمى، به نزديكترين ايستگاه راهآهن صومعه رسيد؛ جمدانـي انها

 T Tجرهاى سربى، براى حفاظت در بر برابر اشعهُ كيهانى.

قYY O قانون كوانتوم
كامتن دو جعبةٔ محتوى الكترومترها راخودش در درست گرفت، و حمل بقئ جعبهها را به
 با دو جعبه در دست خود راه مىرفت، و به دنبالش دستهاى از مكزيكيهاكه هر دو نفر آنها يك جعبه در دست داشتند. اما، هنوز ماجرا پايان نيانته بود. وتتى كه همگیى با بارهاى خود به در صومعه رسيدند، دو سرباز مكزيكى آنها رابراى بازرسى جمدانها مـتوقف كـردند. موضوع اين بود كه در آن زمان دولت مكزيكك باكليساى كاتوليكك اختلان شديد يِدا كرده و اطران هر مؤسسء كاتوليكى سربازان محافظى گمارده بـود. وقتـى كـه سربـازان جعبهها را باز كردند، (اجهار بمب سياه و مقدار زيادى سرب") يانتند كه به احتمال آنها براىى ساختن گلوله بود. كاميتون را توقيف كردند و هند ساعتى در پاسگاه پيلس نگاه داشتند تا موضوع به سفارت امريكا در مكسيكو اطلاع داده شود. آن وقت معلوم شد كـه شــدت

اشعءٔ كيهانى در هومعةء مورد بحث درست همان اندازه است كه انتظار مىرفت.

 حال آنكه كوانتومهاى نور و الحكرونها بايد همجون گلولههايى با جرمهاى متفاوت به شمار آيند. وى هنين استدلال كرد كه علىرغم اين واقعيت كـه الكترونهـاى تشكـيل دهـنـدئ
 الكترونها، وقتى كه مورد اصابت كوانتومهاى نورى قرار مى گيرند كه به اندازها كافى انرزى

 ميز كوبيده شده است، و بازيكنى كه فنر را نمى بيند مى خواهد آنرابا ضربأ يك

نگاه خواهد داشت و از اين ضربه نتيجهاى عايد نمىشود. اگر گلولؤ سفيد تـا انـدازهاهى

 داشته است فزونى يابد، وجود فنر ديگر عملاً هيجّ تأثيرى نخواهد اهد داشت و و نتيجهُ تصادم ميان دو گلوله همان خواهد شد كه اگر گلولة سياه كاملاً آزاد و ونامتصل بود

 استفاده كرد. نتيجه تصادمى ميان كوانتومهاى اشعة ايكس و الكترونهاى (عملاً) آزادا البته، ممكن است به همان نحوى مورد بحث قرار گيرد كه تصادمى ميان دو گلولة بيليارد قرار

 و در نتيجه تكيه گاه اضافى ديگرى دوباره براى فرضيءّ كوانتومى انرزى تابشى فراهم شد.

FYd O قانون كوانتوم

اتم بور
در ســال 1911 فــيزيكدان جـوان دانمـاركى (19 سا سـاله)، بـه نـام نـيلس بـور،

 شدند، تا يايان زندگى خود باهد دوست و همكار باقى ماندند.

 مى خواست رمه گاو برادر زنش رابدزددر، با تير زد؟"
 مىافتاد كه همه استدلال فيزيكدان جوانى راكه به بازديد شهر كينها گك آمده بود (اغلب

فيزيكدانانى كه به كينهاگك مى آمدند جوان بودند) و ميل داشت دربارئ محـاسبات تـازه
 هريك از اطرافيان او نككه سادء توضيح نشدهاى را براى بور توضيح مىداداد، و در نتيجه ديگران هيزى نمى فهميدند. عاقبت، پس از مدتى طولانى كه تازه بـور مـطلب را را درك

 اين مورد كه هه وقت اسلحه كشيدن بازيكن بدكار را مى بيند، تندتر و و فرزتر دست بـر به كار
 فروشى رفت و تفنگى خريد. همگى با بور بيرون رفتيم و او نقش تهرمان را بازى كرد و و همة ما راكشت! مثال ديگرى در مورد كند فكرى بور، بیى استعدادى او براى تند حل كردن معماهاى

 خسته بودند، و بور بس از صر از

قانون كوانتوم YYY O

تقريباً يكك ساعت بعد آقاى بور يـيشنهاد كرد كه هـهـ بـرويم بـراى خـوابـ در در سـاعت

 تاريكى فرياد كشيديم كه "چه خبر است؟" صداى خـى خفيفى جـواب داد "مـن بـور هستم.

 "مقصودم اين نيست كه ... اما ..." تكيه كلام بور بود، و بسا اتفاق مى افتاد كه در حال گردش، با مجلهاى در دست، با خود مىگفت: "مقصودم اين نيست كه تنقيد كنم، اما فقط مى خوامم بفهممكه جطور ممكن است مردى هجين هيزهاى نامعقولى بنويسد!"

 باز مىگشت. كاس "انسان مگس " ماهرى بود و اغلب ديده مى شد كه در در كتابخانه انستيتو با

 راه خود راگرفتند و دور شدند.
 بر اساس كشف راذرفرد بود، مورد بحث قرار مىدهيم. بنابراين نظريه اتمها هستأ بـاردار

مثبت سنگينى دارند كه الككرونها، مانند سيارات يك منظومهٔ شمسى بسيار كوحك؛، بـر گرد آن در گردشند و نخستين اشكالى كه بور با اين تصوير به آن برخورده، اين بود كـه

 حادثةٔ فوق بنفش جينزمتاقض بود، و بر بور آشكار بود كه راه حل اين مشكل بايد بـر به همان

 اتم قبول نشود؟ در اين حالت حركت الكترونها، در حالت عادى يك اتمر اتم، مربوط به اين
 كوانتومهاى انرزّى مكانيكى است. بنابراين، يك سازيكا

 اگر h F مربوط به يك يك كوانتوم نور تابش برابر باشد با با اختلاف انرزّى ميان زمين و حالت

 مىرساند. آكر در انتقال يك الكترون، از حالت انرزى

قYף O قانون كوانتوم
نشر كوانتوم نورى با انرزیى حالات، كوانتوم نورى با انزرى (

 را را ممكن بدانيم. $h_{\nu_{r 1}}$

شكل v- ir
 كند دوباره از $v_{Y Y}$ بسامد بجهد، بايد اين امكان نيز باشد كه انتقالى از
اگر h را كنار بگذاريم، مى توانيم بگويمّ كه هرگاه دو بسـامد صـدورى مـعين در طيف اتم معينى مشاهلشود، وجود مجموع و تفاضل آنها نيز ممكن است انتظار برود. اما،
 ريدبرگ؛؛ مدتها قبل از بيدايش نظريهٔكوانتوم كشف شده بو دو

 اين است كه قواعد و قوانين اين كوانتومى ساختن بيدا شود. برای اين كار بار بور سـاديادترين

است كه بر گرد هستهاى مى خرخد كه بار الكتريكى مئبت دارد، و امروزه پروتون ناميده

 كوجكترى را نشان مىدهد. اين طيف در نقشه نشان داده شده كه در آن خطوط طيفى به
 تعدادشان زيادتر مى شود و به حد مشخصىى در طرف بسامد بلند ميل مى كنند، در طيفنمايى
 معلمى آلمانى، به نام بالمر و" (سريهاى بالمر) معروف است) مىتواند با فرمول سادة زير بيان شود:

$$
\nu=\mathrm{R}\left(\frac{1}{\mathrm{~F}}-\frac{1}{\mathrm{n}^{\gamma}}\right)
$$

داشت:

$$
h \nu=\operatorname{Rh}\left(\frac{1}{f}-\frac{1}{n^{\gamma}}\right)
$$

كه بور آنرا بهصورت زير نوشت:

$$
\mathrm{h} \nu=\operatorname{Rh}\left(\frac{1}{r^{r}}-\frac{1}{\mathrm{n}^{r}}\right)
$$

از بحث قبلى نتيجه مىشود كه إي
 مى شود. علامت (-) را جلوى اين مقدار برای اين گذاشتهايم كه انر انرزّى مدارى الكترو نها
 ָتانسيل آنها در ميدان برقى؛ بهطورى كه نمىتواند ازي اتم اتم خارج شود. جه نور نوع حركتى بر گرد هسته به اين مقادير انرزیى مربوط است؟

FAI O قانون كوانتوم
براى يافتن سادهترين راه براى پاسخ به اين پرسش بايد بـه يـاد آوريــم كـهـ انـرزّى پتانسيل نيروهاى كولن، به نسبت عكس مسافت تا مركز تغيير مىكند. جون در فرمول

俍

بالمر جملهها به نسبت عكس مجذور اعداد صحيح n تغير مىكند، نتيجه مـى شعاع ملارهاى كوانتومى متوالى بايد به نسبت nr تغيير كند. در حالت مدارهاى دايرهایى، كه بور نخست Tنها را مورد بحث قرار داد، اندازههاى نسبى در شكل V - I نشان داده شده است. انتقالات الكترون به مدار دوم از مدارهايى كه آن سوى آنند، مربوط است به
 غيره به اولين مدار بايد يك سرى خطوط مشابه با سريهاى بالمر تشكيل دهد، جز اين اينكه اين خطوط در قسمت انتهايى فوق بنفش طيف قرار دارند. از طرف ديگـرير، انتـــالات از از

 جهنده بور راكامارً تأيد كرد.

 يعنى مقدارى كه در مكانيك كلاسيكك "عمل " ناميده مى شوود. و مـعلوم شــد كــه تـغيير

 فوترالكتريكك از آن استفاده كرد.

 دايرهاى. و به مدارهاى دايرهاى بعدى رفته رفته مدارهاى بيضى شكل بيشترى افزوده

قانون كوانتوم

 بكــان.

مىشود. وضع رفته رفته يسحیدهتر مىگردد. اما به اندازه́ كافى، با واقعيتهاى مشهود جور در مى آيد. اتم، ديگر به منظومهٔ شمسى شباهتى نداشت كه در آن مشترى بتواند به ناگهان از روى مدار زهره بيرد.اما، بهوسيلهُ طرح خيالى مجملى وصف مى شد كـه فـقط از لحـاظ فاصله، به دواير و بيضيهاى مكانيكك كلاسيكت بستگى داشر داشت. نظريهٔ بور6 در طى دهسال اول ييشرفتش، در توضيح خـواص اتمهـايى يـيحیيده و درهم، طيف نورى آنها، اعمال متقابل شيميايى، و غيره موفقيت عظيمى كسب كرد. اما در همهٔ اين موفقيتها جنس اسكلتى اصلى خود را محفوظ نگاه داشت، و تمام تلاشهـا بـراى توصيف كامل انتقالات الكترونى از يك تراز انرزيى به حالتى ديگر و مداسبء شدتهاى خطوط طيفى در نتيجهٔ اين انتقالات به جايى نرسيد.

طرح اتمى بور و مجموعها متناوب عناصر

 نيروى جاذبٔ بيشترى كه هسته وارد مىكند، قطر مدارها بتدريج كه عدي عدد اتمى عناصر زياد مىشود كو جكتر خواهد شد. چچگونه بزرگترين تعداد الكترونها در اتمهاى سـنگينتر بـا ايـن انقباض مــدارهــاى
 است. پايدارترين مجموعه مكانيكى، مجموعهاى است كه در آن فروافتادن مجموعه بـي
 در اتمهاى سنگينتر قاعدتاً بايد در نخستين مدار كوانتومى فروافتد يا به عبارت صـحيحتر

 حقيقت اين است كه چجين چجيزى روى نمىدهد؛ صرفنظر از بار الكتريكى هسته، اندازء كلى همةٔ اتمها تقريباً يكسان است.

 پيرقيمتى را با يك دست زدن مىشكنتد. پاولى آن جنان فيزيكدان خوبى بود كه وقتى در

تانون كوانتوم
آزمايشگاه قدم مىزد، همه چجيز مىشكست. جالبترين مورد روزى روى داد كـه وسـايل

 دقيقه در ايستگاه راهآهن گوتينگن توقف كرده بود.

 در يكك قشر معين ير شد، مدارهاى تشر بعد (مربوط به ترازى با انرزى بيشتر) پر شدن را آغاز مىكند.

○ \bigcirc FA7
بهطور متوسط، از سبكترين عناصر تا سنگينترين آنها، در هر حال يكسان باقى مىماند. با

 وزن مخصوص عناصر مختلف مى شود كه با تغيرات متناوب در خواص شيميايى مترادف

قشرهاى الكترونى در هر نوع اتمى در جدول متناوب عناصر، بنابراين سلسله مراتب
 استفاده را مشخص مىكند، پر شود. در اتم هليوم، اين قشر با دو الكترون پیر شده است كه آي

 ^ الكترون را نگاه دارند و مدار درونى ץ الكترون نگاه مىدارد، قشرهاى اول و دوم با
 سنگينتر از اين بايد به مجموعهٔ سومى از مدارهاى مستدير و بيضى شكل افزوده شوند، و قس عليهذا. به اين ترتيب، اصل "اخراج " پاولى ساختمان دران درونى عناصر را برحسب طرز يرشدن قشرهاى الكترونى آنها توضيح مىدهد. اين اصل، ضميناً، تشابه يكك اتم و تناوب خواص شيميايى را در رديف انواع اتـمى در جــدول عنـاصر مأخــن قـرار مـىدهد. ايـن

اتمها با هم تصادم مىكنند، تماس ميان آنها را برقرار مى مازدر.

 الكترونها بايد همحجون مغناطيسهاى كوحكى نيز بهشمار آيند و داراى گشتاور مغنـاطيسى
 الككترونها را همجون مغناطيسهاى بسيـار كـوجكى درنـظر بگـيريم، بـايد هــم نيروهـاى

قAY O قانون كوانتوم
الكتريكى را به حساب آوريم كه جوابگوى حركت مدارى الكترونهاست و هم نيروهاى مغناطيسى راكه بر اثر جرخش آنها بهوجود مى آيد. يكك الكترون در يكى از اين دو راه متمايل است به خرخش؛ يا ير امر امتداد حركتى كه بر روى مدار خود دارد، يا در امتداد مخالف آن آن. خنين نشان داد داده شده است كه دو دو الكترون

 كه در امتداد مخالف مى خرخند، ميدانهاى مغناطيسى ضعيفى را بــووجود مـى آورند كـهـ

 مشابهند) مى يِمايند. بنابراين معقو لانتر اين است كه مدارهاى مجاز را، جفتى نزديكت بــه
 جنين نظريهاى درباره ساختمان قشر اتمى، توضيح سادهاى در مورد ظرفيت شيميايى عناصر مختلف به ما مىدهل. بر مبناى نظريءّكوانتوم مى توان نشان داد اد اتمهايى كه قشر ها هاى تقريباً كامل دارند متمايلند الكترونهايى اضافى بهدست آورند تا آن قشر را كاملتر كندّا و
 دست بدهند. مثلاً كلور (عدد اتمى IV) دو الكترون در قشر اول، 1 الكترون در قشـر

 (

مى تواند به دو اتم يك ظرفيتى (Y, Na , H و غيره) يا يكك اتم دو ظرفيتى، مثلاً منيزيوم (عدد اتمى) كه دو الكترون برای قرض دادن داردة بييونده. در مورد اين گونه اتصال شيميايى مثالى در شكل
 يا جايى براى الكترون گرفتن ندارند، از لحاظ شيميايى بىاثرندا

ش- 17 شكل
اتصال شبميايى ميان يكن اتم ليتوم (Li)، ر يكن اتم فلونور (F) در مولكول فلونوررو ليتوم. اتم اخافى از تشر تنها در اتم ليتيوم به يكن جاى خالى در تشر شلوغ اتم F مى جهجد.

امواج ماده
در سال I 9 YF جوان Y F

 ָإريس عرضه داشت كه شامل نظريههاى شگفتى بود. دو بروى عقيده داشت كه حر دركت

قА9 O قانون كوانتوم

ديركت (سمت تِب) و لویى دو بروى.
همجون مدارهايى تعبير شود كه طول آنها شامل تعداد صحيحى از اين امواج خلبان باشد.
 ديديم كه در حالت ساده مدار مستدير، حاصل ضرب طول مدارهاى كوانتومى در گشتاور
 مدار سوم و غيره. اين دو بيان وقتى يكسان مىشود، كه فرض كنيم طول موج خلبان برابر

است با خارج قسمت h بر گشتاور ذره:

$$
\frac{\mathrm{h}}{\mathrm{mv}}
$$

و اين همان است كه لويى دو بروى فرض كرده بود. برای مدارهايى با شعاع متوسط، موج خلبانى كه دور مىزند نمى دوتواند (ابه ته خودش برسده و در نتيجه اين نوع حركت نمىتوانــد وجـود داشـته بـاشل. بنـابرايـن دو بـروى، باضربهاى جسورانه، مدارهانى كوانتومى اسكلتى نيلسن بور را درهم شكست، و آنها را به مفهوم گوشتيتر لولههاى ارگك، غشاهاى طبل، و امثال اينها تبديل كرد. مكانيك كور كوانتومى ذرات خواصى بهدست آورد شبيه امواج صوتى يا نورى.

$$
\begin{aligned}
& \text { v-11 شكل } \\
& \text { امواج دو بروى كه بر روى مدارماى بور در حركند. }
\end{aligned}
$$

 تحقيق در اينكه آيا امواجى با الككرونها همراهند يا نه، مى توان از تكـنيكك تــفرق اشـعـئ ايكس استفاده كرد.
آزمايشى در اين زمينه توسط جورج؛ بسر ج. ج. تامسن (كه بعداً سر جورج ناميده شد)، و ديويسن T

قانون كوانوم O
در يك ميدان الككريكى تند مىشد، بر بلورى تاباندند. نتيجهاى كه بهدست آمد، نشان داد
 روى تطر حلقههاى تفرقى، درست منطبق بود با طول بور بـي

 بهوسيله "امواج خلبان" هدايت مىشوند، ولى جنس اين امواج در آن زمان كاملاً مـبـهم مانده بود.

 موضوعهايى را (از قبيل شدتهاى خطوط طيفى) مورد بحث قرار داد داد كه نظريئ قديمى از
 ييغى شكل توصيف شوده با توابعى معروف به توابع Ψ توصيف مى شد كـه مـربوط بـــ انواع مختلف امواج دو بروى بودند كه مىتوانند در فضاى اطراف هستـه وجـي باشند. همزمان با انتشار نخستين يادداشتهاى شرودينگر در يكك مجلةً آلمانى، "آنالن در
 ديگرى به نام "زيجريفت در فيزيك؛ " يادداشتى درباره نظريهُ كوانتوم منتشر كرد. توصيف نظريه هايزنبرگك به زبان نسبتاً ساده دشوار است.

هدف اصلى در اين نظريه، اين بود كه مقادير مكانيكى از قبيل موضع، سرعت، نيرو، و غيره، نبايد بهوسيلُّ اعدادى از قبيل ه يا بهوسيلء ساختمانهاى رياضى مجردى به نام "ماتريس " مشخص شوند اند كه هر هر ماتريس شبيه است به جدولى از كلمات متقاطع با تعداد نامحدودى از از خطوط قائم و افقى
 دستورهاى جبر معمولى است، اما در اينجا، يكك تفاوت استنايى فاحش وجا ونود جبر ماتريسى حاصلضرب A در B لزوماً مساوى نيست با حاصلضرب B B در A، A، كه نتيجهٔ بيجيدگى بيشتر روش ضرب ماتريسى است. نزديكترين تشابه را مىتوان در در زبان و مكالهـ آدمى يافت كه در آن داگلاس ملكم و ملكم داگكلاس يكت مفهوم ندارند. با اين وصف

 بهدست مى آيد كه بدر ستى همه بديدههاى كوانتومى شناخته شده را را توصيف مى انـيكند. انتشار همزمان دو يادداشت كه هر دو، با استفاده از روشهاى كا كاملاً متفاوت، به نتايج
 كه هر دو نظريه از لحاظ رياضى مشابهند. واقعاً هم ماتريسهاى هايزنبرگك همان جوابهاى

قانون كوانوم ○
جدولى معادلّ شرودينگر است، و در حل مسائل مـختلف نـظريهّ كـوانـتوم مـى توان از مكانيك موجى و مكانيك ماتريسى به تناوب استفاده كرد.

روابط "ابهام"^ャ

مفهوم فيزيكى امواج دو بروى كه ذرات مادى رادر مسير حركتشان هدايت مى آيند، جيست؟ آيا اينها موجهايى واقعى نظير امواج نور هستند، يا آنكه تصورات مرات موهوم رياضى

 دارند. ياسخ اين پرسش دو سال بعد داده شد.
 و روشهاى معمولى مشاهده را در مورد بديدهمهايى با مقياس اتمى به كار برد رد در در تجربيات

 مقياس به اندازهاى كوجكند كه حتى در اندازهگيريى كه با حداكثر آرامى انجـام گـرفته
 منتشر ساخته است.

ممكن است آشفتگيهايى اساسى در پديده́ مورد آزمايش پديد آورد، و نمىتوان مطمئن

 وى، تفنگى الكترونى تصور كرد كه بتواند تكك الكترونى در امتداد افتى اتاق اتا كاملاً تخليه

 و حركت الككرون را در اتاق بهوسيلّ ميكروسكويى خيالى بييند؛ كه ممكن بود به دلخواه

Yq』 \bigcirc قانون كوانتوم

سراسر طيف راه از بلندترين امواج راديويى تاكو تاهترين امواج راديويى، نشان دهد. بينيم كه وقتى تفنگك يكك الكترون در اتاق پرتاب مىكند6 چه روى خو اهد داد. بنابر كتابهاى درسى مكانيكك كالسيك، الكترون بايد مسيرى به نام شلجمى را بیمايل. اما، در واقع، در لحظهاى كه يكك فوتون به آن اصابت مىكند، الکترون پس مىزنل و سـرعت خود را تغير مىدهد. با مشاهدهُ ملام ذره در نقاط مختلف مسيرش، يى خواهيم برد كه به
 خيالى داريم. تعداد تصادمها را با تقليل انرزى فوتونها به حداقل مىرسانيم، و اينكــار را ممكن است با به كار بردن نورى با بسامل كمتر انجام دهيم. در واقع با رسيدن به حد بسامد بينهايت كم (كه در دستگاه ما امكانپير است)، مىتوانيم از آشفتگى حركت الكترون، به هر اندازهاى كه مىخواهيمَ بكاهيم. اما، آن وقت اشكال ديگرى يسش مى آيد. هرجه طول موج نور بلندتر باشد، به علت اثر تفرق، مشخص ساختن شى براى ما كمتر امكان خواهد داشت. بنابراين، ديگر نمىتوانيم موضع صحيع الكترون را در هر لحظة معين بيدا كنيم. هايزنبرگك نشان داد كه حاصلضرب "ابهامهاى " موجود در موضع و در سرعت ذره6 هرگز نمى تواند كو حكتر از خارج قسمت مقدار ثابت بلانكک بر جرم ذره باشد.

$$
\Delta \mathrm{V} \Delta \mathrm{x} \geq \frac{\mathrm{h}}{\mathrm{~m}}
$$

مايزنبرگث آزمايشى را برای مشاهدة مسـر بك ذره طرح كرد.
به اين ترتيب، با امواج بسيار كو تاه مىتوانيم مواخـع يك ذرهٔ مـتحركك را بــدقت مشخص كنيـم؛ ولى نه سرعت آنرا. حال آنكه با امواج بسيار بلنل مىتوانـيم سـرعت نـا

O بركذشت فيزيك

 تقريب نسبتاً رضايتبخشى تعيين كنيم (شكل (V - Y) . مسير مشهود در بيان رسمى نه خطى آتي

 كاملاً مشخص بلكه نوار باريكى خواهد بود كه حدود آن آن محو و مبهم است. در حالتى

 الكترون را در يك اتم با همين بيان توصيف كنيم. نوار ابهام تقريباً به اندازء مسافت مدار

تا هسته است!
فرض كنيم كه از يى جويى يكك ذرئ متحركك بهوسيله نور صرنـنظر كـئنيم، و در

 برشده است كه هر وتت الككرونى از نزديكى آنها بگذرد (افعال)، مى شوند. (انشانههاى)"

YqY \bigcirc قانون كوانتوم
فعال شده ردّ ذرهٔ متحركك را نشان خواهند داد، همانطور كه قطرات آب در يكك اتـاق
ابرى واقعى اين عمل را انجام مىدهند رّ
 حساس ساخت كه نتوانند مقدار قابل توجهى انرزّى از ذرهٔ متحرك بگیيرند، وْ آن وقت خواهيم توانست مسير ذره را با دقتى كه موزد دلخواه است مشاهده كنيم. اما در مكانيكت كوانتومى است كه هرجه دستگاه مكانيكى كوحكتر باشد، كوانتومهاى (مقادير حداقـل)
 الكترون) خيلى كوجكك شدهاند، انرزى بيشترى از ذراتى كه از يـهلوى آنهـا مـى گـنرد
 , حى جويى يكك ذره بهوسيلة نور يديد مى آيد، و باز هم به همان رابطه "ابهام" در موضع و

در سرعت مىرسيم.
اين گرفتاريها در كجا ما را رها مىكند؟ هايزنبرگك چنين نتيجه گـيرى كـرد كـه در
 نازك)، كنار بگذاريم. اين مفهوم به اندازه́ كافى دقيق است، اگر با يا يديدههايى در قلمرو تجارب معمولى سروكار داشته باشيم كه در آن حالت مى توانيم جسمى متحرك را حـا درنظر بگيريم كه گويى بهوسلةً يكك قطار راهآهن بر مسيرش نگاه داشته شده است. اما در جهان خرد الكترونهاى يكك اتم، حركات انفرادى و حوادث جنين قـاطع و مشـخص
 حركت مىكنند كه بايد درست مسير خطط مرزى مكانيكَ كلاسيك بهشمار آيند. نكته مهم اين است كه هدايت و رهبرى در ضمن حركت، بيشتر به طرزى احتمالى صورت مى گیرد تا قطعى. فقط مى توانيم اين احتمال را محاسبه كنيم كه يكك الكترون در موضعى معينى مرين، به هردهاى كه در وسيلهاى معيّن است برخورد خواهد كرد. اما، نمى توانيم به يقين بگويمي كه در يكك ميدان نيروهاى معين چه راهى را يس گیرد

بايد روشن شود كه كلمئ "احتمال " در اينجا در مفهومى به كار مىرود كه با مفهوم

 بيايد، منظورمان فقط اين است كه بايد احتمالها را تخمين بزنيم؛ زيرا ترتيب ورقهـا را در يك دست ورق نمىدانيم. اگر درست مىدانستيم كه ورقها چگــونه بـهلوى هـم قـرار
 فيزيك كلاسيك فرض مىكند كه اين موضوع در مورد مسئلهاى نظير رفتار مولكولهاى كاز درست است؛ رفتار آنها بايد حنان باشد كه بر اساس احتمال آمارى، فقط بــه عــلت
 مى توانستيم حوادث را با تمام جزئيات آن در كاز بـيشگويى كـينيم. اصـل "ابهـام"، ايـن

 يك اندازه گيرى درست، هم از موضع و هم از سرعت يك ذر ذره، در مقياس اتمى بهدست

آيا تابع ¢ (يا بهتر بگوييم مجذور آن) كه مسير يك ذره مادى را هدايت مى مكندي، "موجوديت فيزيكى " مشخصى است كه در همان مفهومى وجود دارد كه اتمهاى سوديوم يا ير تابههاى قارهيما وجود دارند؟ ياسخ اين برسش بستگى به منظور ما از كلمئ "وجود دارد. توابع موجى، در همان مفهومى "وجود دارد" كه مسيرهاى اجسام مار مادى وجود درد دارند.

محو و مبهم نيست.

Y99 \bigcirc قانون كوانتوم
شايد نزديكترين تشبيه، در زمينءٔ فيزيك كلاسيك، تشبيه با انتروپى باشد. انترويى تابعى است رياخى كه فيزيكدانان نظرى آنرا ابداع كردهاند، و با احتمال رياضى وجود هر طرح معين حركت مولكولى كه جهت انجام يافتن فـرايندهـاى حـرارتـى را مشـخص مى مند مربوط است؛ از كوحكترين مقادير انترويى به بزرگترين مقادير آن. امـا انـترويىى يك "موجوديت فيزيكى " در همان مفهوم جرم و انرزى نيست. در حالى كه مىتوان از يك گرم ماده يا يك گرم انرزى (از بعد از زمان اينشتين) سخن گفت، سخن گفتن درباره يك گرم انترويى هيج مفهومى ندارد. و سخن گفتن درباره يكى گرم امواج دوبروى يـى يـا يك گرم تابع شرودينگر نيز همان اندازه نامفهوم است.
نظرى به فرمول هايزنبرگك نشان مىدهد كه كهر خرا مى توانيم اصل "ابهام " را، وقتى كه با ماذه در مقياس مهجهانى سروكار داريم، كنار بگذاريم، و به احل قديمى حتميت اعتماد كنيم. حاصلضرب ابهام مربوط به موضع در ابهام مربوط به سرعت، برابر است با مـقدار

 تريليونيم ثانيه، و، در همان لحظه، هم سرعت آنزرا، تا يكت تريليونيم سانتيمتر بر ثانيه - يا

$$
\mu \text { • }
$$

اصل هايزنبرگَ توسط بور، به صورت فلسفهُ جديدى از علم فيزيك درآمد. ايـن فلسفه مستلزم تغير عميقى در نظريههاى ما نسبت به جهان مادى است؛ نظريههايى كــهـ از از تجارب معمولى خود از دوران كودكى بهدست آوردهايم - امــا مـفهومى بـه بسيـارى از معماهاى فيزيكك اتمى داده است.
بسيارى از فيزيكدانان نظريئ جديد را زود پذيرفنتد، و برخى ديگـر، اصـلاً، آنرا نیسنديدند. آلبرت اينشتين، جزو دستهٔ دوم بود. عقايد فلسفى وى درباره حـر حـتميت بـه او او اجازه نمىداد كه ابهام را در مقام يكك اصل بالا ببرد و عيناً همانطور كه بدبينان كوشش مىكردند تضادهايى در نظريهٔ نسبيت او بيابند او هم سعى مىكرد تضادهايى در اصل ابهام
-
فيزيك اتمى كشف كند. با همهٔ اينها كوششهاى او فقط اصل ابهام را استوارتر ساخت. اين

بهطرز جالبى مصور ساخته است.
در جلسهٔ مباحثهاى كه بور نيز در آن حضور داشت، اينشتين يك "آزمايش خيالى "
 جهارم گشتاور (جرم × سرعت) است. وى گفت كه معادلهُ ابهام هايزنبرگَ ايجاب ماب مى ايكند
 برابر است با مقدار ثابت پلانكك (h). اينشتين دست به كار شد تا ثابت كند كه خنين نيست -

 و زمان خروج آنرا با هر تقريب دلخواهى انداز
 استدلال اينشتين وارد ساخت. وى، آزمايشى با يك حسابگر خيالى ابداعى خود عـرضه

قانو كوانتوم
ساعت در ميدان گرانش دارد. بور سعى كرد تا نشان دهد كه مسلماً ار تباطى بين ابهام زمان و تغيير جرم قوطى وجود دارد؛ موضوعى كه اينشتين درصدد مردود سارد ساختن آن بود.

ترازوهاى اينشتين - بور براى اندازهگيرى وزن نور

 پذيرفتن اصل ابهام خوددارى كرده، و اميدوار بو دكه روزى علم فيز فيزيك به به نظريه حتميت باز خواهد گشت.

سوراخهايى در هيجّ

 يدا كند، تقاضاى عضويت در دانشگاه كيمبريج كرد و پذيرفته شد. كمتر از ده سال بعد

 ضمن سخنرانيهاى علمى هميشه تند و زننده بود. يكت بـار در ضــي

 يكجا اشتباهى در علامت كرده باشم." ديركك جواب داد كه "در جاهايى به تعداد فراد فرد. بديهى است كه سه، ينج، هفت و.... اشتباه در علامت همين نتيجه را خواهد دراهد داد.

 پرسش نيست، بلكه بيان است. خواهش میكنم نفر بعدى سؤال كند.

قانون كوانتوم ○
竍 وقتى كه اين مسئله به ديرك عرضه با استفاده از سه Y، يِداكرد. راه حل اين است:

$$
N=-\log _{\gamma} \log _{\gamma} \sqrt{\sqrt{\sqrt{\sqrt{r}}}}
$$

كه در آن تعداد راديكالها برابر است با عدد معلوم N. . براى كسانى كه با علم جبر آشنا هستد، دليل رابطهُ بالا واضح است.
 اتفاقاً آن يكى هيجّ سهمى در شهرت و معروفيت وى نداشته است. در ضمن صـي

 معلوم شد كه اين طريقه را هم قرنهاست كه خانمها مرد مىداندر اند.

 ابتدا توسط شرودينگر در مورد حركت عادى (غير نسبيتى) بيان شد؛ يعنى در مورد حر حركت

 به نتيجهُ رضايت بخشى نرسيده بود.

 آن، تعلق مىگرفت. و، در ضمن، خودبها
 از آن است كه در اينجا مورد بحث قرار گيرد، اما به يقين كاملاً درست استى استا

 جهان شگفت (منفى)" كه با قوء تصور و تخيل ما مبازرهطلبى مىكيند. در اين جهان (امنفى)"

 نيروهاى دافعهاى ميان آن دو وجود دارد. هرگاه الكترونها هر دو الكترونهانى (امعمولى") باشند، اين نيروها شتابهايى در جهتهاى مخالف به آن آنها مىدهند و و الكترو نها با با سر اسرعت بسيار

 - $\frac{1}{Y}$ mv ${ }^{r}{ }^{r}{ }^{\text {الكترون معمولى }}$ است. بنابراين انزرْى كل مجموعه

قانون كوانتوم
كسى تا به حال (الككرونهاى خر) يا سنگهاى (اخر) يا سيارات (اخر) مشاهده نكرده است، اين فقط راهحل فرضى معادلات مكانيك اينشتين است و، يسش از آنكـه ديـرك نسبيت و كوانتوم را به هم بيوستگى دهد، موجبى برایى اعتراض در ميان نبوده است. واقعاً

 قسمت فوقانى مربوط است به يكك الكترون معمولى، و قسمت تحتانى به (الككترونهاى خر اير)

 امكان رياضى ديگر اعتنايى نبايدكرد.

v- ir شك

اما اگر نظريههاى نسبيت و كوانتوم را به هم بيوستگى دهيم، به اين آسانى نمى توانيم

امرى روى نمىدهد، ولى خرا روى نمىدهدب؟

ق.Y O O قانون كوانتوم
اتاقهاى يك كشتى فرو رفته در Tب آزاد مىشود، و ماهى تيزهوش ما حبابهاى نــرهاى

 داشته باشند. اگر جز اين بود، جگگونه حبابها مى توانستد بالا بروند؛ حال آنكه جاذبه هر چيز را پايين مىكشد؟
ديركك هم نظريههاى مشابهى دربارهٔ اقيانوس خود حالت انرزى منفى پر شده بود. فرض كنيد كه حبابى در اقيانوس ديركك وجود دارد، يعنى
 از آنجاكه فقدان يك بار الكتريكى منفى معادل است با وجود يك بار الكتريكى مثبت، فيزيكدان آنرا همجون ذره باردار مبتبى مى ويند. همجنين، بنابر تشبيه حباب، علامت جرم
 ممكن است كه يكك حباب در اقيانوس ديركك جيزى جز يك پر يروتون معمولى نباشد؟ اين

 ذره حباب باردار الكتريكى مشبت درست برابر است با جرم يك الكترون معمولى. از راه
 اقيانوس ديرك؛، اتم ئيدروزن نمىتواند، جز در مدت بسيار كوتاه جزوى از يكك ثـانيه،

 فيزيكدانان از شنيدن درباره آن نظريه خلاص شدند......

 الكترونهايى با بار مبُت و • ه \% از الكترونهايى با بار منفى وجود داشته است كه هـر دو

 درست منطبق است با مقادير محاسبه شده بر اساس نظرئُ ديركك. اينطور مشـاهده شــــهـ

 گشته است. تمام جزئيات، واقعاً، درست مطابق بيشگويى درآمده استى است اما نظرية خيالى و عجيبى كه الككرونهاى مثبت را سوراخهايى مى شمار در كه در يكـ
 يكك نظريه است و با سازگاريش با شواهد تجربى توجيه مى شودد، خواه ماه مطابق ميل ما باشد
 لزومى ندارد فرض شود كه اقيانوسهاى بينهايت متراكى از الكتر ونيا
 خالى درنظر گرفته شوند.

ضد ماده

چس از كشف الكترونهاى مبّت، فيزيكدانان به امكان وجود يروتونهاى منفى فكـر

 مستلزم انرزيهايى تا حدود جند يندين بيليون الكترون ولت استا اين اين مسئله طرحهاى عظيمى

 نوع گذارده شد: يك بواترون

 الكترون ولتى، شاهد بيرون ريختن پروتونهايى منفى بودهاند.

 ذرات ديگرى كه با آنها همراهند، جدا شوندا شا صورت گرفت كه از ميدانهاى مغناطيسى، شكافهاى باريك، و و غيره تشكيل يافته بود، وا و از از
 انبوه ذرات از هدف (كه در پيرتو بمباران شده بواترون قرار داشت) بيرون میى آمد و و از اين "لابيرنت" مى گذشت، انتظار مىرفت كه تنها يروتونهاى منفى بتوانند از سـر ديگـر آن

48) Beuatrone
51) Cosmotron

54) Segré
49) California
52) Brookhaven
55) Chamberlain
(fV) نگاه كنيد به نصل مفتّم تسمت اتمشكن.
50) Berkeley
53) Long Island

- ا

خارج شوند. جهار آزمايش كنندهاى كه در انتظار بودند، در هنگام به كار افتادن مـاشين ذرات تندروى را مشاهده كردند كه به مقدار يكك ذره در 7 دقيقه از دريحءّ عقب خارج مى شدند. اين ذرات، جنانكه آزمونهاى بعدى نشان داده پروتونهاى منفى اصيلى بودند كه در هدف بمباران شده توسط پرتو پر انرزُى بواترون توليد مىشدند و معلوم شد كه جرم آنها بايد • IAF برابر جرم الكترون باشد؛ كه جرم هروتون مشبت معمولى است. همانطور كه الكترونهاى مشتى كه بهطور مصنوعى توليد مىشوند خـيمن عـبور از ماده معمولى، كه محتوى مقادير فراوانـى از الكترونهـاى مـنفى مـعمولى است، از ميـان مىروند، انتظار مىرود كه بروتونهاى منفى نيز، در برخورد با بروتونهاى مشبت در هسته

 اين فرايند خيلى شديدتر صورت مىگيرد، و نتيجهٔ آن "ستاره "اى است كه از از ذرات دفع انع شدهُ فراوانى تشكيل يافته است.

 هروتونهاى مبت. حجون در اين حالت بار برقى در كار نيست، تفاوت ميان نوترونها و خد نوترونها فقط بر اساس قابليت انهدام مشتركشان مى تواند مشاهذه شود.
 مىدهند ممكن است در حالاتى مخالف هم وجود داشته باشند، ضلد مادهاى نيز كه از اين ذرات مخالف تشكيل مىشود ممكن است اينگونه مورد بحث قرار گيرد. خواص فيزيكى و شيميايى ضد ماده بايد همان خواص مادهُ معمولى باشد، و تنها راه براى آنكه بگويم دور دو سنگك نسبت به يكديگر مخالفند آن است كه آنها را يهلوى هم بگذاريم. اگر هيج اتفاقى روى نداد، هر دو از يكک نوع ماده هستن. اما اگگ يكديگر را با انفجار شديدى از ميان بردند، مخالف يكديگرند.

قانون كوانتوم O
وجود احتمالى ضد ماده، مسائل عظيمى را براى نجوم و كيهانشناسى مطرح مىكند. آيا همهُ مواد موجود در جهان از يك نوع ماده استى اسا يا آنكه تكههايى از مادهٔ معمولى خودمان و ضد ماده، بهطور نامنظم، در فضاي بى بيايان براكندهاند؟ بنابر دلايلى قوى در در
 نبود، فرايندهاى انهدام ونيستى ميان ستاركان و ومواد رقيق ميان آنها تـابش مشـهود بسيـار

 برسشها را نداريم، فقط مى توان اميدوار بود كه نسلهاى آيندهٔ فيزيكدانان و منجمان بتواند اين راز راكشف كنند.

آماركيرى كوانتومى

 هيجّ انززى در ميان اين ترازها مجاز نيست كه وجود داشته باشد. اوضاع و و احوال به واسطهُ اين واقعيت يسحيده شده بود كه بعضى از ذرات (مانند الكترونها) تابع احل باولى هستند

O FIF FIF
بنابراين يس از دو تا از اين ذرات ذره ديگرى مجاز نيست كه يكت تراز كوانتومى را اشغال كند؛ حال Tنكه ذرات ديگر (مانند مولكولها) پاييند هنين قيدى نيستد. اين واقعيت، به دو نوع Tامارگيرى منجر شد:Tمارگيرى فرمى - ديركف كه براى ذرات تابع اصل پاولى قابل استفاده است، Tمارگيرى بوش - اينشتين كه براى ذراتى قابل استفاده است كه تابع اصـل پاولى نيستد. شكل V - YP ب و ج، به اين منظور كشيده شده است كه تفاوت ميان اين دو نوع Tمارگيرى روشن شود. Tمارگيرى كوانتومى بسيار جالب است، اما توضيع دادن Tان بدون استفاده از اصطلاحات پفنى) بسيار دشوار است.

شكل V - YP

سه نوع ردش Tا Tارگيرى براى انرزى
بنابراين، در اينجا مىتوان بيان كرد كه اين دو نوع آمارگيرى جليد در تمام موارد عادى از قيِل فشار هواه عملا" فرقى با Tامارگيرى كلاسيكك قديمى ندارد. انحرافـاتى كـه انتظار مىرود، و مشاهده نيز شده است، فقط در مواردى است از قبيل گاز الكـترونى و

قانون كوانتوم ○
ستارگان معروف به (اكوتولههاى سفيد" كه در آنها دستورهاى فرمى - ديرك حكومت مى مند، و گازهاى معمولى در دماى بسيار نزديكك به صفر مطلق كه در آنها دستور دهـاى

 آنان جون بلور روشن خواهد شد.

هستهٔ اتمى و ذرات ابتدايى

كشف راديو آكتيو

 توسط رونتگن اطلاع يافته بود، بر آن شد تا بابيند هيز ديگرى هم هم شبيه اشعة ايكس ايكس از موراد

 يك بلور اورانيل را بر روى يكك صفحهئ عكاسى يوشيده در كاغذ سياه قـرار داد و و آنرا

 آنكه كاغذ سياه بيشترى به دور صفحه مى يِّيد باز هم لكه در همانجا مشاهده مىشد.

 گذاشته بود تا هوا مساعد شود. خورشيد تا روز اور اول مارس نمايان نشد، و و روزى هـ هم كه

 نداشته، و سياه شدن صفحه در مدتى صورت گرفته كه بلور اورانيل در كشــو بسـتأه مـيز بكرل روى آن قرار داشته است.
اين واقعه به عـلت تـابش نــوذ كـنـندهاى بـود شـبـيه اشـعهُ ايكس، ولى تمـاماًاً بـه

 شيمايى، كه بهوسيلّ آن اتمها به يكديگر بيوستهاند، ندارد، بلكه خاصيتى است نهونته در آنـي خود اتم.

عناصر راديو آكتيو
يك سال بعد از كشف راديو آكتيويته، تعداد فراوانى از شيميدانـان و فيزيكدانـان
سرگرم مطالعٔ اين یديدهُ جديد شدند. خانم سكـلو دوفسكـاكـورى "، متولد لهستـان،

MIY O هسته اتمى و ذرات ابتدايى
تحصيلكرده در رشته شيمى، كه همسر فيزيكدان فرانسوى، پـير كـورى، بـود، آزمـون ير دامنهاى را بر روى تمام عناصر شيميايى و تركيبات آنها، از لحاظ راديو آكتيويته، انجام داد، و دريافت كه توريوم تابشى شبيه تابش اورانيو مصادر مىكند. با با مقايسةٔ راديو آكتيويته

 موضوع نشان داد كه كانهها، بايد محتوى مقادير اندكى از بعضى از اجسام انـيام راديـو آكتيو

 جسمى شد كه خواص شيميايى مشابهى با بيسموت داشت. و اين جسم به ياديود يو موطن اوري او، لهستان، يولونيوم نام نهاده شد. كارهاى ديگرى نيز انجام گرفت، و جسم ديگرى، مشا مشابه
 راديو آكيويته اورانيوم بود.

 كتابى كه انگشتان خانم كورى آنها را لمس كرده بوده، قرار داشت.

 بديده شكانت اورانيوم را نيز كشف كرد.

خاندان راديو آ كتيو

 دوازده سال بعد، كه آزمايشهاى مربوط به بياكـندگى را در مـفحة نمىدانست).
 شده بود كه روانه الكترونهاى بسيار تندرو است.

 رسم بر اين است كه در ككابهاى درسى فيزيك (كه شامل وكا كـا
 انحرافات از يكك ميدان مغناطيسى (يا برقى) مى گذرد. يرتو آلفا به سمت جب (بار بر برقى مثبت)، يرتو بتا به سمت راست (بار منفى) منحرف مىشود، و يرتو گاما اصلاً مـنحرن
5) actinium

$$
\begin{aligned}
& \text { ()، - lAVF)Debierne (} \\
& \text {. - - (laro - lı১r) Giesel (v }
\end{aligned}
$$

8) hahn

M19 هسته اتمى و ذرات ابتدايى O
نمى شود (امواج برقاطيسى). ولى اين موضوع كه حنين آزمايشى در مطالعات اولئَ مربوط

 r (0)

اشعء آلفا، بنا، وگَاما
.
در آغاز كار، راذرفرد و همكارش، فردريكت سادى ، به ايـن نـتيجه رسـيدند كـه
 ديگر. صدور يكك ذره آلفا با بار الكتريكى Y ا جدول مندليف دو خانه به سمت جب قرار گرفته است. و وزن اتمى آن جهار واحد كمتر

است.
صدور ذره بتـا (يكت الكترون منفى) عنصر را در جدول مندليف يكت خانـهـبـه راست

ممكن است وجود داشته باشد:
() (
Fn + 1 ()
Fn + Y Y (
Fn +
وزن اتمى اورانيوم FY^ خاندان آن، كه نتيجه تلاشى آلفا و بتاست، متعلق هستن وزن اتمى توريوم Y Y

هست\& اتمى و ذرات ابتدايى
وجود نلارد، اما ممكن است بهطور مصنوعى در بیلهاى اتـــى تـوليد شـود. نـتيجهع كـار محققين راديو اTكتيوته6 بيدايش شجرهنامهٔ خاندانهاى موجود بود. در صفـحه بـعد طـرح تلاشى خاندان اورانيوم نشان داده شده است كه از اورانيوم YYA راه مسىافـتد، و هس از هشت تبديل آلفا و شش تبديل بتابه سرب پايدار Y Y تبديل مىشود. دو رقمى كه در بالاى نام هر عنصر راديو آكتيو نوشته شله است، عــدد اتـمى و وزن اتـمى را بـهدست مىدهد؛ در حالى كه رقم زير Tن نیم عمر بر حسب سال، روز6 ساعت، دقـيقه، يـا ثـانيه است. طرحهايى نظير همين طرح را مىتوان براى توريومَ هروتاكتينيومَ و خاندان چهارم (بىنام) كه بهطور مصنوعى توليد شده است، تهيه كرد.

O \quad سرگذشت فيزيك

$9 \cdot-r r f$	$9 Y-r r \wedge$
$U X_{1}$	U_{1}
rpDd	$f / \Delta \times 1.9 y$

q1-ryp
UX ${ }_{r}$
llm

$\mathrm{RaB} \operatorname{RaA} \mathrm{Rn} \quad \mathrm{Ra}$ Io U_{Y}

$\Delta \cdot d$
Ar-r.i AF-rI.
$\mathrm{Pb} \quad \mathrm{Po}$
بايدار \quad irvd \square

هستء اتمى و ذرات ابتدايى O \bigcirc

قانون بقاى زندگى

 سال، براى يك سگك ها سال، و براى يك اردكك نتط جند سال است. منغنى نشـان

مىدهدكه احتمال نسبتآكمى وجود دارد كه آنها خيلى زودتر از سن معينى بميرند. همجنين

 خود تشكيل شده است، به عضو بعدى خاندان "تغيير شكل دهد "،، بستگى به دورهة زمانى انـي

ندارد كه از تشكيل آن مى گذرد. اين وضع شبيه است به وضع سربازانى كه در يك نـ نبرد

 آن، كاملاً متلاشى شده باشند.

[^1]MYD O هسته اتـى و ذرات ابتدايى

راهبنلهاى روزنهدار
كندى تبديلات آلفا، مستقلاً، توسط مؤلف اين كتاب، كه در آن زمان در آلمان كار

 اين دو نوع نيرو در (شكل ا

 است بگذرند؟ البته، بنابر مكانيك كلاسيك، اين امر كاملاٍ غير ممكن است. اگـر يكـ

رامبندّ بָانسيلى بر گرد مــته اورانيوم كه از آزمايشهاى براكندگى راذرفرد بهدست آمله است.
مانع جوبى را بر روى ميزى قرار دهيم و تويىى را رو به آن بغلطانيم كه انـرزیى آن فــط

 آن خطوط ديگر شعاعهاى نور نيستند بلكه خط ريزش انزرّى تابشى را نمايش ميدهندئد،
 ياوريم، بعضى از خطوط ريزش كه از هوا مى تذرند در شيشه دوم وارد مىشوند.

MYY O هسته اتمى و ذرات ابتدايى

الف

J

$$
\begin{gathered}
\Lambda-F \text { F شكلف)، و مبحث نور موجى (ب) } 1 \text { (الفكاس درونى نور، بنابر مبحث نور مندسى }
\end{gathered}
$$

اين بديده، در صورتى از راه آزمايش قابل مشاهده است كه فاصلة ميان دو فصل مشترك
درست برابر با جند طول موج نور باشد (يعنى جند ميكرون).

 در صورت يكك صدم درصد درست بودن مكانيك كلاسيك انجام دادن آن بـهوسيلهُ ذرات كاملاً غيرممكن است.

ذرات آلفا كه درون هسته قرار دارند، حـركت تـندى دارنـد و يـيوسته بـا راهـبند

 است كه مشاهده نيز شده است. محاسبءٔ نيم عمرهاى عناصر راديو آكتيو مختلف بر اساس اين نظريه به سازگارى كامل با ارقام مشهود منتهى مى شو يمود.

هسף O هستُ اتمى و ذرات ابتدايى

سازمان هستهاى و نوترونها

تفسير و توجيه بديدهٔ راديو آكتيو، هــهجون تـلاشى خـودبهاخود هستهـهـاى اتـمى

 آن محصور است، بسرعت افزايش مى يابد، بايد انتظار داشت كه الكترونها

\ نوترون +
 موضوع آن بيرون كشيدن "نوترونها" از هستهٔ بعضى از عناصر سبك ور و، در در نتيجه، اثبات

 كونديش بهوجود آمد.

تلاشى بتا و نوترينوها

 هستههاى اتمى شامل يروتونها و نوترونها هستند، و در عناصر سنگينتر تعداد
 مقابل فقط • / ی يروتون است؛ و نسبت آنها
 آنها

هستؤ اتمى و ذرات ابتدايى ○ ا

 تابع آن است و هر سطح كوانتومى بهوسيلةٔ دو تا از آنها اشغال شــده است (بـا
 تبديل بتا مى يابند.
در سال 19 | 9 جيمز حدويك يك فيزيكدان جوان انگَليسى، در دانشگاه بـرلن
 و كارش اين بود كه طيف اشعهُ بتاى صادر شده بهو سيلة اجسام راديو آكتيو مختلف را، كها كه
 توزيع بيوستهاى از انرزيهاى حركتى را نشان مىداد كه تقريباً از صفر بود تا مقادير انـاد نسبتاً

زيرا فيزيكدان جوان و با ذوق نمىتوانست براى خود دوستانى در ميان زندانيان ديگر، كه

 تدريس میكرد. هند سالى بعد، اليس يادداشتى منتشر كرد كه بحث مـبسوط و مـهمى از كارهاى جدويك بود. يكى از توضيحات همكن براى وجود طيف انرزى بيوستهُ اشعهٔ بتا مىتوانست اين اين باشد كه ذرات بتايى، كه از اجسام راديو آكتيو مولد خود مى حدود وسيعى از دست مىدهند. اليس آزمايش بسيار هوشمندانهائى طرح كرد كه در در آن

 انرزى آزاد شده در هر ذره، درست برابر با انرزى متوسط الكترونهـا در طـيف يـي يـيوسته است. و بَه اين ترتيب ثابت مىشد كه هيجز نقصانى در ماده روى نــداده است. بنـابرايـن،

 انرزّى هستههاى مادر (مولد) و دختر، انرزى ذرات بتا تا حـا حدود وسيعى تغير مى اركند. جها

هستء اتمى و ذرات ابتدابى O W W
بتا مقدارى انرزّى اضافى ممكن است از هيج بهوجود آيد. بنابراين فرضيه قـانون بقـاى
 حركت دائمى نوع اول (فصل چنجم) را، كه متكى بر فرايندهاى تلاشى راديو آكتيو است، غير ممكن مى سازد.
ولفگانگگ پاولى كه در نظريههاى خود، در مورد اين موضوع، محافظه كارتر بود،
 درنظر گرفت كه صدور يكك ذرهٔ بتا همواره همراه است باصدئ

 جدويك؛، يادداشتهاى او را در سمينارى نقل كرد، يكى از حاضران از وا وى برسيد كه آيا
 فرمى جواب داد:

خواندر) ${ }^{17}$
14) Fermi
16) No, le neutrone di Chadurick sonno grande, le neutrone de pauli erano piccole egli devono star chiamato neutrini.
 است و هون انريكو فرمى از بزرگترين دانشمندان فيزيكت زمان مان ماست، بى مناسبت نيّ نيست

 توسط موسولينى به او اعطا شده بود، روزى با اتومبيل فيات كـوجكك خـودش بـه يك

 زيرا عاليجنابان خيلى با هيبتترند و با راننده در اتومبيلهاى بزرگى مىنشينيند." از اين رو
 اجازه ورود دهند تا در انتظار خروج اربابش از جلسهٔ سخنرانى باشده

 آنها دستههايى از نوترينوها، در نتيجئ تلاشى بتاى فراورد دهماى شكانى
 تندترين نوترونها، عملاً، بهوسيلّ جدار بتوني

 بيرون بيندازد و پروتون رابه نوترون تبديل كند: P +

هستة اتمى و ذرات ابتدابى ○ هr
تخمين شدء حنين فرايندى بسيار كوجكك بـود. براى كشـف اين فـرايـند شمـارگرهاى

 سال نورى، به كار برده شود.

نخستين اتمشكن

از وقتى كه راذرفرد محقق دانست كه بديدهٔ راديو آكيويته تبديل خودبهخرد يك

زيردريايى عليه كشتيهاى آلمانى بيردازد. راذرفرد به اين دليل امتــاع ورزيـد كــه وظـيفـة

 اين كار هرگز نمى تواند صورت گيرد. زيلارد براى آنكه نظريه خود را را ثابت كند به اداره ثبت اختراعات رفت، و حق انحصارى براى فعل و انفعالات هستهاى به مقياس وسيع به نـا نام
 بمب اتمى بر فراز هيروشيما منفجر شد و به جنگك جهانى دوم بايان داد. راذرفرد در در آن

 كشتن يكديگر به كار مى برند."
 مىكرد. از آنجا كه حصار كولن، كه هسته اتمى را فـرا گـرفته است، هـرجـه

 ديگرى از ذرات تندرو نيز وجود داشت كه راذرفرد در آنها را يروتون تشاي
 مطالعةٔ تبديلات هستهاى به واسطءُ كشف درخشانى به نام اتاق ويلسن يا اتاق ابرى آسـان

هسY هr اتمى و ذرات ابتدايى
شد. آزمايشهاى مربوط به اين كشف، در يكى از فصول بيش بـانـا نـام آزمـايشهاى ج. ج. ج. تامسن توصيف شده است. اين اتاق بر اساس اين واقعيت است كه هر وقت يكت ذرهٔ باردار برقى تندرو از هوا (يا از هر گاز ديگَر) بگذرد، در مسير خود يون توليد مىكند. اگر هوايى كه اين ذرات از آن مى گذرد از بخار آب اشباع باشد يونهايى كه به ايـن تـرتيب تـوليد مى شوند همخحون مراكز تراكمى برای قطرات ريز آب بهشمار مـى آيند. در ايـن حـالت

 سريوش شيشهاى G و يستونى مانند Pاست كه سطح فوقانى آن رنگگ سياه شده است. در
 S از ينجرهٔ كنارى بشدت روشن شده است. اكنون فرض كـنيم كـهـ مـقدار كـمى مـاده راديو آكتيو را بر نوكك سنجاقى (N) گَذاشتهايم كه در نزديكى ينجره́ O O قرار دارد.

 نشده است، تراكمى بديد نمى آيد، و يونهاى مثّت و منفى، كه حاصل از از ذراتى است كه
 كه يستون بسـرشت بِمقدار معينى به پايِن رانده شود، انبساط هواى محصور ميان يستون و و

شيشه دماى هوا را پایِن خواهد آورد و تراكم بخار آب رابههمان نحوى پديد مى آورد كه ابرها در نتيجه روانههاى بالا روندهٔ هواى مرطور دور در در جو

 عكسبر دارى شود.
در قسمت بالاى نقشه، نخستين عكس تلاشى هستهاى مصنوعى را مـى بينيم كـه در

 راديو آكتيو مخلوطى است از Rac و Rac تشكيل شده از Rac بر اثر فرايند تبديل آلفا.
 شدهاند. ذرات آلفاى 'Rac مىتوانند در لايههاى ضخيمتر هوا نفوذ كنند، و آثار آنها در
 است به تبديل هستهٔ نيتروزن بر اثر تصادم يك ذرئ ذأك آلفا. مسير دراز و باريكى كه از ازين
 است. در حالى كه مسير يهنى كه رو به بالا مىرود، معلوم شده كه بر اثـر هستـأ تـندرو اكسيرّن بِيد آمده است.

 معمولى O=1

هستهُ اتمى و ذرات ابتدايى 〇

انرزيهای بر اساس طول مسير آنها انجام گيرد)، معلوم مىشود كه ايـن انرزيهـا بـه انـدازه
 حنين مىيابيم:

$$
\begin{aligned}
& \mathrm{He}^{f}=F / \cdot \cdot \mathrm{r} \mathrm{\wedge} \mathrm{\wedge} \\
& H^{\prime}=1 / \cdot \wedge 1 \% \\
& \frac{N^{I F}=\mid F / \cdot \cdot V \Delta \Delta}{1 \Lambda / \cdot| | F Y} \\
& \frac{\mathrm{O}^{1 v}=1 V / \cdot P \Delta r}{1 \wedge / \cdot 1 Y 77}
\end{aligned}
$$

بنابراين توازن انرزی، كـهه در اين حــالت منفى است، I YD • • / • واحهـلـ، معـادل بـا / / / است. این رقم، در حدود خطاهاى آزمايشى6 با رقمى كه در فوق براى فقدان انرزّى در فعل و انفعال نقل شد سازگار است. اينگونه اندازهگيريها نخستين دليل تجربى مستقيم است در صحت قانون اينشتين درباره́ برابرى انرزّى و جرمَ بنابراين در اين فعل و انفعال انرزى هستهاى آزاد نشده، بلكه از بين رفته است. اما در موارد ديگر از قيل بمباران آلومينيوم با ذره́ آلفا، مقدار بسيار زيادى انرزُى هستهاى بهدست مى آيد. جون ذرات آلفا فقط پرتابههاى سنگگينى هستند كه بهوسيلَ عناصر راديو آكتيو طبيعى صادر مىشوند، نخستين مطالعاتى كه درباره́ تبديلات هسـتهاى مـصنوعى انجـام گـرفت محدود به اينگونه فعل و انفعال بود. در سال • 1 ب 1 مؤلف اين كتاب كه با لرد راذرفرد در كيمبريج كار مىكرد، بر اساس نظريهُ راهبند پتانسيلى محاسبه كرد كه پروتو نها به دو علت ير تابههاى خيلى بهترى هستند: يكى آنكه بار برقى آنهاكو جیكتر و ديگر آنكه جرمشان كمتر است. درواقع نيز محاسبات نشان داد پروتونهايى كه بهوسيلة يكى پتانسیل برقى يك؟ ميليون ولتى شتاب يافتهاند و با انرزّيى چجندين بار كو چڭكر از انرزّى ذرات آلفاى 'Rac در حال حركتند، بايد تجزيهُ قـابل مـلاحظهاى در عنـاصر سـبكك تـوليد كـنند. راذرفـرد از دانشجويان خود، كاككرافت (اكنون سر جان) و والتـن خـواست كـه مـاشينى بـا فشـار الكتريكى بسيار زياد بسازند تا پرتوهاى پروتونى با اين مقدار انرزّى توليد كند و، به اين ترتيب، نخستين اتمشكن را در سال ا 1 | 9 به كار انداخت. كاككرافت و والتن با هدايت

זرتو پروتونها بر هدفى از ليتيوم، ثابت كردند كه در هـر تصـادم مـوفقيتآميز، دو ذره
 جخنين بود: سه شاخه مشاهده كردند (نقشه V قسمت بآين) كه نشانهُ اين بود كه بور، بر بر اثر تصادم به به

 اورلاندو لارنس كه آزمايشگاه تشعشعى دانشگاه كاليفرنيا اكنون به نـام وى نـا نـامگارارى

هستئ اتمى و ذرات ابتدايى O OY

متتاوب، با تِانسيل زياد، مر تبط شده است؛ بهطورى كه ميدان برقى، بهطور متناوب، ميان

 سيكلوترون در اين است كه، بهازاى يكك ميدان مغناطيسى معين، دورهٔ تناوب دوران يك ذره باردار برقى بر مسير دورانيش بستگى به سرعت حركت آن ذره ندار نـارد. هون افزايش شعاع مسير و طول مسير دايرهاى درست متناسب است با افزايش سرعت، مدت زمان لان لازم براى يك دوران ثابت باقى مىماند.

اصل سبكلوترون
اگر همه حيز طورى مرتب شده باشد كه دوره تناوب دوران يونهاى افشانده شده در ميدان آهنربا برابر باشد با دوره́ تناوب جريان متناوب منبع AC، ذراتى كه به به مرز ميان دو
 همان جهت حركت ذرات است. بنابراين هر بار كه يون از از اين مرز میى گذرد

 هدف T بيرتاب خواهند شد.

عكس نوقانى نقشه VI سيكلوترونى را نشان میدهد كه در دانشگاه كـولورادو در دست تكميل است، و انتظار مىرود كه يرتوهايى يروتونى با انرزیى حدود mev • ب توليد

 ديگرى هستند از اصل اوليه سيكلوترون. فيزيكدانان، در توصيف نتايج آزمايشهاى خود دربارة تبديلاتى كه بر بر اثـر بمبـاريار
 يا به اختصار (امقاطع عرضى") سخن مى گويند. براى دركك مفهوم اين اصطلاح، مى توانيم

 معدودى از قبيل سر و بدن خلبان و قسمتهايى از موتور است كه بايد إي مورد اصابت قـرار

 به هند سانتيمتر مربع در پاشنه بای چیش

 است. مرد هاق اعتراض مىكند كه اين وضع منصفانه نـيست، زيـرا بــدنش بـهنـأه هـــن

هسته اتمى و ذرات ابتدايى ○ OK
بيشترى را به گلوله عرضه مىكند تا بدن حريفش. مرد لاغر مـى گويد (ابسيـار خـوب! از
 كن تا كلولههايى كه در خارج از آن اصابت كرد به حساب نياب نيايد.)

(مغطع عرضى كشنده (بهنة سبام) يك هوإيماى اكتـانى (الف) و بكت هوابيما (ب)،

 مثالهايى از مقاطعى كوحكتر از اين در فرايندهاى بمباران هستهاى خواهد يافت.

ساختمان هستهاى و پایدارى

در حالى كه الكترونهاى اتمى آزادانه در فضا حركت مىكنـند و و فواصلى نسبت به به هم

مست: اتمى كه از يروتونها و نوترونها تشكيل يانه است. آنهايى كى در داخل مسته مستند تحت تأثير نيرويى ترار نمىگيرند، در صورنى كه آنهايى كه بر سطع آن مستند به درونكثيده مىشوند.

MYD O هستٔ اتمى و ذرات ابتدايى

 نشان مىدهد كه شعاع هستؤ اتمى به نسبت ريشهٔ سوم جرمش افـو

 است، و يكك ظرف معمولى كه از آن هر شده بـاشد جــند بـيليون تـن وزن دارد! سيـال

 است. اگر فيلمى (ورقهٔ بسيار نازكى) از صابون بر هارجوبى شكل U و يكت تكه سيم مستقيم جنان تشكيل شده است كه سيم مستقيم مى تواند حرك اريم

 دارند، و ارتعاشات و دورانهاى اين قطرات خرد بايد جوابگوى صدور اشعها گاما بر اثـر

تحريك هستهها باشند.
با همة اينها جان ويلر، فيزيكدانى از يرينستون، معلوم داشته است كه سيال هستهالى اليا

 اين حال نيروهاى كشش سطحى، كه متمايل به منقبض كردن اين ذرت بو بو داده به شـكـل

〇 ○ سرگذشت نيزيك
كروى هستند، در برابر نيروى دافعة برقى ميان دو يهلوى مخـالف آن قـرار مـى گيرند و

وزن خواهد داشت.
بهنظر نمىرسد كه هستههاى فرضى ويلر هرگز مورد استفادهُ عملى يـيدا كـند. امـا

MYY O هسته اتمى و ذرات ابتدايى
اين افزايش خيلى سريعتر از افزايش انرزى كشش سطحى است، و حنين نتيجه مـى گيريم كه، در حالى كه در هستههاى سبك نيروهاى برقى ممكن است نقش كم اهميت ترى را اليفا كنند، در هستههاى سنگينتر اين نقش خيلى مهمتر خواهد شد. از آنجا كه نيروهاى كشش سطحى متمايلند كه قطرات مايع را يكلِارجه نگاه دارند و دو قطره را، كه با هم تماس بيدا مى منند، به صورت يكك قطرهُ بزرگتر درآورند، مـىتوان انتظـار داشت كـه در مـورد عناصر سبك، در فرايندهاى همجوشى هستهاى، انرزیى آزاد شـود. از طـرف ديگـر در مورد هستههاى سنگين نيروهاى مخرب كولن تفوق خود را خـواهـند داشت، و فـرايـند همجوشى هستهاى فرايندى انرزُيزا خـواهــل بـود. محـاسبات نشـان مـىدهد كـه "نـاحئه همجوشى "، تقريباً، تا يك سوم راه جدول مندليف (از سنگينترين عناصر تا سـبكترين) گسترش يافته است، و هرجه به حدود اين ناحيه نزديكتر شويم آزاد شدن انـرزیى مـورد انتظار رفته رفته كمتر مى شود. "ناحيهُ همجوشى " كه در اين نقطه شروع مى شود، نخست مربوط است به آزادى انرزیى نسبتاً كمى كه بسرعت افزايش مى يابل و بـراى سـنگينترين عناصر به بزرگترين مقدار خود مىرسد. بنابراين هر عنصر شيميايى منبعى از انرزّى يتانسيل است، و مسئله فقط اين است كه جگگونه فعل و انفعالات هستهای را به راه بيندازيم و كارى كنيم كه اين فعل و انفعالات ادامه يابد.
مدل قطرهاى هستهٔ اتمى به حقيقت خيلى نزديك است. اما نبايد فراموش كرد كـه یروتونها و نوترونهاى درون هسته تابع همان قوانين كوانتومى هستند كه الكترونهاى اتـم تابع آنند، و بايد انحرافى را، در تصوير سادهاى كه ذكر شد، موجب شوند. و البته جنين انحرافى، در مطالعهٔ مشروحتر خواص هستهاى، يافته شده است. (شكل د 11 - 1) تـغير انرزّى بيوند را برای هر نوكلئون در تمام حدود، از سنگينترين هستهها تا سبكترين آنـها نشان مىدهد. يك افزايش منظم انرزّى بيوند در نخستين بخش رديـف عنـاصر، و يكى افزايش كندتر در بخش بعد مشاهده مىشود. چنين افزايشى مربوطبهنواحى هـمـجوشى و شكافت است. در ضمن، ديده مىشود كه منحنى كاملا يكنواخت نيست، و يِيج وگر ههايى وجود دارد كه يكك يوند شديد غيرعادى را بين نوكلئونها مىرساند. اين بـيّي و گـرهها

A-11 شكل

 الكترونى كامل شده در اتمها. در مورد اتمها، عنا

 عناصر مختلف بيفتد. بهازاى تعداد معينى از نوتر از
 همين مى

 مى ماهل، و مطالعه و توضيح آنها را دشوارتر مىكند. اما، ماريا گويرت، در شيكاگـوك، و

MYQ © هستء اتمى و ذرات ابتدايى
هانس زُنس، در هايدلبرگك آلمان، همزمان با يكديگر اين اشكال را از ميان برداشتند، و

(مفطع عرضى ضبطه نوتر رنها برحسب تابسى از تعداد نوترونها در مسته

فعل و انفهالات همعحوش زنجيرى

 r. جورج واشينگتن (كه مؤلف اين كتاب در آنجا تدريس مىكرد) و انستيتوى كارنگى واشينگتن مشتركاً تشكيل شده بود، جلسات خود را ادامه داد. در آن روز نيلس بور، كــه يكى از شركت كنندگًان سرشناس اين كـنفرانس بـود، نـامهاى از يكـ خـانم فـيزيكدان آلمانى، به نام ليزه مايتر r كه (به علت روى كار بودن رزيـــم نـازیى) در اسـتكهلم كـار
 سابقش در برلن، اوتو هان، نامهاى به ورى نوشته است است مبنى بر اينكه او و دستيارش، فريتس او او

عنصرى در نيمه راه جدول مندليف است پيى بردهاند. مايتر و برادرزادهاش، كه با وى به استكهلم رفت، فكر مىكردند كه اين موضوع ممكن است نتيجئ شكافت، يعنى دو بار هر

 كنفرانس شركت داشت، در مقابل تخته سياه قرار گرفت و فرمولهايى مربوط به فرايـند

 كار ها بهراه افتاد.

 كند، شكافى در امتداد سطح استوايى آن پديد مى آيد و هسته كـاملاً دو پـاره مـى شود

MdI هسته اتمى و ذرات ابتدايى Pd
(شكل جفت (درست هستههاى ديگر اصابت كنند و آنها را بشکافند. در ايـن صـورت، چههـار نـوتر ترون تـوليد مى شود كه مىتوانند چجهار هستهٔ ديگر را بشكافند.... بنابراين ممكن است فعل و انفعـالى زنجيرى چديد آيد كه بسرعت تمامى تكهٔ اورانيوم را فراگيرد، و حاصل آن آزاد ساختن

مقدار عظيمى انرزّى هستهاى است.

شكافت يكت مستـ: سنگِين در نتيجن تصادم نوتر ونى
نوشتن در باب موضوعى كه معمولاً بـه نــام "انـرزى اتـمى " مـعروف است، كـار
 مخفى بود، حيزى وجود نداشت كه بتوان درباره́ آن مطلبى نوشت. اما اكنون كه اطلاعاعات فراوانى را مىتوان در كتابهاى متعدد و در مقالات مجلهها و روزنامهها يافت، موضوع تان تا

اندازهاى كم اهميت است. گذشته از اينها، گَرحـه شكـافت هستـٔه اورانيوم را مـى توان بهاعنوان قسمت بسيار جالبى (و فقط يك قسمت) از تاريخحهُ علم فيزيك بهس بشمار آورد،

 جاپ كرد) از يكك بمب اتمى و يكك رئاكتور (نمونةء استخر شنا)، در اين قسـمت فـط مراحل اصلى مورد بحث قرار خواهد گرفت. نخستين واقعيت مأيوس كنندهاى كه از آغاز كنفرانس آنس واشنگتن آشكار شد، اين بود

 ~u مخلوط نيست، بلكه اشتهاى شديدى به نوترونها دار دارد، و آنها را به چهنان ميزانى به چهنگگ

 زيانبخش يا بهراه انداختن فعل و انفعال در اورانيوم طبيعى بهوسيله مادهاى شكافتيذذير، و
 اين دو راه، هر دو، امتحان شد. در كارخانئ بسيار سرى و محرمانهاى در اوكك ريج دها

 واقعيت است كه تركيبات اورانيوم محتوى همججاى سبك، تا انداز ماىى، تندتر از تركيبات محتوى همجاى سنگين در غثاهاى متخلل نفوذ مى وكند.

هستئ اتمى و ذرات ابتدايى O OAY
كندرو را ترجيح مىدهد. به علت سرعت بسيار زياد نو ترونهـايى كـه در شكـاف هسـته

 كندساز

 ئيدروزن) و اتمهاى كربن هستند كه مشـخص كـنـدهٔ دو نـوع از يِيلهـاى (كـربن و و آب
 | I FI

 بلعيده شدن يك نوترون توسط هستههاى ur^^ روى مىدهد، در معادلة زير نشان داده

شده است:

$$
\begin{aligned}
& { }_{9 r} U^{r+\lambda}+. n^{\prime} \longrightarrow{ }_{q} \mathrm{U}^{1 r q}+\gamma \\
& { }_{q} \mathrm{U}^{r r q} \longrightarrow{ }_{q}{ }^{r} \mathrm{~Np}^{r r q}+\mathrm{e} \\
& { }_{1 r} \mathrm{~Np}{ }^{r r q} \longrightarrow{ }_{9}{ }^{r} \mathrm{Pu}^{r r q}+\mathrm{e}
\end{aligned}
$$

كلامت شيميايى نيتونيوم و يلوتونيوم است. اين دو (اعنصر وراى اورانيوم) هستند كه در يِل اتمى توليد شدهاند. درحالى كه نتوتونيوم فقط مرحلة́ واسطهاى است در در فر فرايند،
 اگر نوترونى به آن اصابت كند آسانتر شكسته مىشوده، و شكافت آن آن نوترونهاى فرعى

O سركنشت فيزيك

 مىتواند از بقيئ اورانيوم جدا شدور انور. امروزه توليد مواد شكافتـذير در ايالات متحد به X تن در سال، نسبت بـه y تن در روسيئ، بالغ مىشود.

بمبهاى شكافت و رئا كتور ها
مههترين مفهوم در تمام بحثهاى مربوط به فعل و انفعالات شكافت زنجيرى، مفهوم

هستٔ اتمى و ذرات ابتدايى ○
آن ماده خاص ناميده شده است. از آنجا كه تعداد نوترونها در هـر شكـافت، در مـورد

 فقدان تعداد بيشترى از الكترونها را از سطع خودي
 بحرانى آن، در مدتى به اندازه كافى، حندان

 رسيدن بههمين نتيجه وجود دارد. اگر بخواهند يكك فعل و انفعال شكافت زنجيرى را تحت شرايط كـنترل شــدهاهى

 هستهاى زنجيرى، ذاتآ، فعل و انفعالى است انفجارى، و هرگو

 يخشكنهاى "اتمى" در اتحاد جماهير شوروى [سابق].

فعل و انفعالات هستهاى حرارتى

قرنها منجمان و فيزيكدانان از خود مىيرسيدند كه جه خيزى خورشيد (و ستارگان ديگر) را درخشان مىسازد. مسلماً كه يك "احتراق" معمولى براى اين كار كافى نـيست.

 و لرد كلوين، در انگلستان، نظر دادند كه خورشيد تارد تابش نور و حرارت خود را را در نتيجهّ

 نوعى تبديل هستهاى فراهم مى آورد. در سال

 خورشيد، بعضى فعل و انفعالات هستهاى را برمىانگيزد كه سرعت آنها به آن اندازه كاز كافى

 جند صد بار كوجكتر است از انرزى يرتابههاى اتمى كه در آزمايشهاى معمول برایى تبديل آريل
28) Helmholtz
31) Houderman

MDY O هستء اتمى و ذرات ابتدايى
مصنوعى عناصر به كار مىرود. اما بايد اين را هم درنظر گرفت كه در حالى كه يرتابههاى
 احتمال بسيار كمى دارند كه يسن از خارج شدن از ميدان عمل به هستهاى اصابت كـنـند، حركت حرارتى ييوسته ادامه دارد و ذراتى كه در اين حركت وارد ارد هستند در مدتى بیى إيايان

 دماها و جگاليهاى درون خورشيد فعل و انفعال هستهاى حرارتى ميان هستههاى ئيدروزن (يروتونها) و هستههاى ساير عناصر سبك توانستهاند به آن مقدار كافى انزرّى توليد كنتد

 دربارة آنجه در هنگام تصادم يروتونها با با انواع گوناگون هستههای سبك
 سبكى وجود داشته باشد كه تابليت به چنگگ آوردن يروتونها و ونگهد طولانى دارد. بس از به جنگگ انتادن جهارمين يروتون يكت ذره آلفـا درون هسـتـأ "دام

 در فيزيك" انتشار دادند. اما اين عنوان را ناشر مجله بهعنوان معموليترى كـه هـيج جــنـئ فكامى نداشت، تغير داد. قريب ده سال بعد، وتتى كه اطلاعات كافى دربارهٔ تبديل هستههاى سبكى كه مورد

نشان داده شده است. در اين مجموعئ فعل و انفعالات هستهای جهار بروتون بیىدريى به
 صورت ذرهء آلفا صادر مىشوند. مدت كل اين دوره 7 ميليون سال است، و انرزى آزاد

خورشيد مىدانيم كه هر گرم از مواد خورشيدى محتوى تـقريباً ا . . . / • گـرم كـربن
 در ثانيه مىرسد كه جوابگوى فقط |\% ميزانى است كه به آن ميزان انرزى بايد در در درون خورشيد توليد شده باشد. فرايند ديگرى در همان زمان توسط جارلز كريحفيلد، كه در آن زمـان دانشــجوى

 شود. در ضمن فعل و انفعالات بعدى دوترون به هيلوم تبديل خواهد شـد و در نـــيـيجه بهممان پايان حلقؤ كربن مىرسد ولى خيلى سريعتر. فعل و انفعالاتى كه در اين فرايند، كه
ra9 هسته اتـى و ذرات ابتدايى
به فرايند H - H معروف است، صورت مىگيرد جنين است:

$$
\begin{aligned}
& { }^{1} \mathrm{H}^{\prime}+{ }_{\mathrm{r}} \mathrm{H}^{\prime} \longrightarrow{ }_{\mathrm{C}} \mathrm{D}^{r}+\mathrm{e}+\mathrm{v} \\
& { }^{\mathrm{D}} \mathrm{D}^{r}+{ }_{,} \mathrm{H}^{\prime} \longrightarrow{ }_{r} \mathrm{He}^{r}+\gamma \\
& { }_{r} \mathrm{He}^{r}+{ }_{r} \mathrm{He}^{r} \longrightarrow{ }_{r} \mathrm{He}^{r}+{ }_{r} \mathrm{H}^{\prime}
\end{aligned}
$$

 ارگ̋ در هر يروتون آزاد مى

 كاملاً عايق باشد و هيّج حرار تى از آن خارج نشود. علت آنكه خورشيد، به رغم اين ميزان

توليد حرارت ناجيز، تا اين اندازه داغ است بزرگى آن است. حقيقت اين است كه جون

 واحد حجم در درون آنها بسيار كم باشد.
از بحث فوق Tشكار مى شود كه نه حلقهُ كربن و نه فعل و انفعال H - H به براى

 برد مناسب نيست. كليد حل اين مسئله بهوسيلة همدجاهاى سنگين ئيدروزن بار باردست آمده

 فراوان است. تريتيوم كه همجاى نابايدار است، در طبيعت وجود ندارد (جارد (جز مقدار ناجيزى
 مصنوعى در يلهاى اتمى ساخته شود. قيمت آن بهعنوان سوخت اصليا اما بهعنوان (افروزندهُ هستهایى) براى بهراه انداختن فـعل و انفعـال هسـتهاى حـرارتـى در در دوترون كار آمده است.
فعل و انفعالات ممكن بين همجاهاى سنگين ئدرورزن عبار تند از:

$$
\begin{aligned}
& D^{r}+, D^{r} \longrightarrow{ }_{r} \mathrm{He}^{r}+n^{\prime}+r / r \Delta \mathrm{mev} \\
& D^{r}+, D^{r} \longrightarrow, T^{r}+\mathrm{H}^{\prime}+\quad r \mathrm{mev} \\
& D^{r}+, T^{r} \longrightarrow{ }_{r} \mathrm{He}^{r}+n^{\prime}+1 v / r \mathrm{mev}
\end{aligned}
$$

مستء اتى و ذرات ابتدايى ○
هستایى حرارتى ميان مسجاهاى سنگين يُياروزرن انجام شود، گرم كردن آن همجـاها تا تـا دماى جند ميليون درجه است. اين كار را دانشمندان لوس آلاموس و و ايالات متحد در اول

 متر و به عمق حدود • 7 متر. اين نتيجه، بـهوسيلةُ فشـردن و گگرم كـردن مـقدار مـينينى ئيدروزن سنگين بر اثر انفجار يك بمب نيرومند شكافت بهدست آمد.

 بيجيدهتر مىشود. مسلماً در اين حالت شرايط فيزيكى، كه در آن شرايط فعل و انفعالات

هستهاى حرارتى صورت مىگيرد، بايد بشدت تغير كند. قبل از هر هيز فعل و انفعال بايد

 اين گاز رقيق داغ را از جدار ظرف دور نگا

 استفاده از ميدانهاى مغناطيسى قوى هستند. در دماى بسيار زيادى كه در در اين حالت مور درد نياز

 در امتداد لوله مى يسجند، در فعل و انفعالات D - T ا D D D نتيجه شود و انرزّى هستهایى

 فسمت هاشور زده توليد انزرى را در اورانيوم موجود در رئكورما نمايش مىدمد.

و مقدار زياد نوترون آزاد شود. بديهى است كه براى بهراه انداختن چنين فرايندى، نخست گاز درون لوله بايد بهوسيلهُ عاملى خأرجى تا دماى بسيار زياد گرم شود. دومين امكان عبارت است از به كار بـردن نيروهـاى مغنـاطيسى حــاصل، بـهوسيلة تخليههاى برقى كوتاه، ولى شديد، در لوله. دانسته شده است كه دو جريان متوازى، كه در يكت سو روانند، يكديگر را جذب مىكنند؛ بهطورى كه در مورد جريانى نسبتاً قوى، گًاز (يا بهتر بگويم نگاه دارد و در باريكهاى در امتداد محور فشرده شود. اينكه جگگونه اين اثرك كه به (اثرشينع)" معرون است، مؤثر واقع مىشود، بـا بـررسى (شكل 1 - IV ب) مشـخص مـىشود. برخلان روشى كه قبلا" توصيف شد، در (اثرجينع") جست و خيزى صورت مى گيرد مثل موتور اتومبيل. الا اين رجحان را دارد كه گاز درون لوله، بر اثر تخلئَ برقى خـودبهخود گرم مى شود و هيع گرمای خارجىى لازم ندارد. جـنين تـخمين زده شــده است كــه يكك

جريان جند صد هزار Tميرى كه جند ميكروثانيه طول بكشد، „ينجىى" آنجنان شديد توليد
 بسيارى از آزمايشگاههاى جهان كارهايى در اين زمينه انجام مىییيرد، و كامالًا امكان دارد كه مشكل فعل و انفعالات هستهاى حرارتى تحت كنترل بهزودى حل شود.

A IV AV A

دو روث احلى كى اكنون براى نل و اننعالهاى مستهاى حرادتى تحت كترل فرامم شده است. ااستلاراتـرره در هرينستن ر (يرهمسترون) در لوس آلايوس

مزونها و هيیر ونها

فيزيكدانان، در آغاز دههُ اول همين قرن، فقط با ذرات معدودى كه ماده را تشكيل

 به زمين فرو مىبارند، در اشعئ كيهانى كشف كرد.

شـ
نعويض بكث مزون (اسنخوان) بين در نوكلونون.

 بيمورد است. البته بهغير از نام الكترون كه از" "الكترا"ى يونانى (به جار بانى "كهربا") مشتق

FYY ه هست\& اتمى و ذرات ابتدايى

شله است، كلمهٔ يونانى مزوس حرن "ت " و حرف "ر " در خود ندارد. بنابراين6 بهرغم اعتراضات فيز يكدانان فرانسوى كه نمى خواستند نام ذرهُ جديد با كلمهٔ مزون (به معنى خانه در زبان فرانسه) مشتبه شود نام ذره́ يوكاوا را سرانجام "مزون" گخذاشتند.
مزونها، از همان آغاز كار، دردسر فراوانى براى فيزيكدانان فراهـم سـاختند، زيـرا جنين مىنمود كه موضوعى در جذب آنها در هوایى جو ناجور درمى آمل. در مورد ذراتى با هنين انرزى زياد (بيليونها ولت الكتريكى)، انتظار مىرفت كه جذب در مواد مختلف فقط بهمقدار كل (جرم) مادهای كه از آن مىگذرد بستگى داشته باشد. البته6 جـون تمـام الكترونهايى راكه اين ذرات تندرو با آنها اصابت مىكنند مىتوان براى اين انـرزى آزاد بهشمار Tورد (به بحث مربوط به اثر كامتن مراجعه كنيد)، فقط تعداد الكترونها بهحساب مى آيد نه نحوهُ ارتباط آنها با هستههاى اتمى مختلف. بنابراين اگر شدت بر تو اشعهُ كيهانى را بر قله و در پای كوه بلندى اندازه بگيريم، كاهش شدت فقط بايد بهوسيله وزن ستون قائم هوايى مشخص شود كه از پايسن تا بالاى كوه قرار دارد. اگر تفاوت فشار جوى ميان دو
 ستونى از جيوه به ارتفاع الست. در نتيجه6 جذب اشعهُ كيهانى در طبقهاى از جو به ضخامت mm • . . بايل بههمان اندازهاى باشل كه در ستون هواى ميان قلة كوه و پاى كوه است. اين قاعده در مورد الكترونهاى اشعهٔ كيهانى، بخوبى6 مؤثر مىافتاد. اما بهنظر نمىرسيد كه در مورد ذرات نوپديد مؤثر باشد. آزمايش مهمى در اين زمينه6 در سال •9F 9 توسط برونو روسـى و ديگـران در درياحهَ اكوليكك (به ارتفاع • PYF متر)؛ نزديكك قلهُ كوه اونز6 در نـزديكى دنـور (بـه
 جيوه يا، به عبارت ديگر6 Y متر Tب بود. برونو روسى دو شمارگر مزونى مشابه به كار برد؛ يكى در دنور و ديگرى در كوه. شمارگر دومى دو متر در آب فرو رفته بود. ${ }^{\text {د }}$ هون آب درياحه، در اين حالت، بايد همان اندازه جذب توليد كند كه طبقه هواى ميان دريـاچهه و
 آزمايش شاعرانها بر بود.

خيابانهاى دنور، انتظار مىرفت كه هر دو شمارگر يكك نتيجه را نشان دهد. امـا آزمـايش

 كه اين تأثير ممكن است مربوط به نا نايايدارى ذاتى مزونها باشد. حقيقت اين است كه آي اگر مزونها در حركت خود بهسوى زمين تجزيه شوند، جزئى از آنها كه بـه زمـين انـين مـىرسد

 حركت مى وكند، مدت زمان لازم
 كه اين مقدار بستگى به سـرعت آنها دارد. بـراى مزونهـاى بسيـار تـندرو و بـا بـا انـرزیى "

 تجربى با فرمول $\quad \Delta t^{\prime}=\frac{\Delta t}{\sqrt{1-\frac{v^{r}}{c^{\gamma}}}}$
مزونها را نيز، بس از آنكه در يك تكه ماده جذب كننده بـه آرامش درآمـدند، انـدازه

 ذراتى با قدرت نفوذ بسيار زياد، جون قدرت مزي

مستئ اتمى و ذرات ابتدايى O O9

تلاشى مزونها در مسيرى كه از اكوليك تا دنور بيمودنل.
راكت به هوا فرستاده شوند. روش استانده در اين مطالعات، بر اساس استفادة از صفحات

 در مسير آن قرار دارند متأثر مىكند. اگر صفحات ظاهر شده در زير يك ميكروسكا

 از آخر (از پايِن شكل به سمت چچ رو به بالا)، متعلق است به يك بر مزون؛ واقعيتى كه

 الكترون معمولى، كه در نقطهاى توليد شده است كه، در آنجا، مسير مزون بايان مىيابيد.

اين واقعيت كه الكترون در امتداد مخالف يرتاب شده است، ثابت مىكند كه بايد يكك يا
 است. اين واقعيت نيز كه هيج مسير ديگرى مرئى نيست، اثبات مىكند كه اين اين ذرات بايد از از

 قديم، نوترينوها هستند. بنابراين، تلاشى يكت مزئ

كه در آن + و - مزونهاى مبت و منفى را نشان مىدهد. جون جرم يك مز مزون

 انرزى اينتّين، اين اضافه جرم تبديل به mev • • ا اخواهد شد كه ميان ذراتى كه در فرايند تلاشى تشكيل شده است تقسيم مى شود.

 مزونگيرهاى آنها تكه ماده را فراگرفتهاند تطع مىكنند، و مرگك يكك مزون مبت را را اعلام مىدارند.

MYI O هسته اتمى و ذرات ابتدايى

 فرمى و ادوارد تلر نشان داده است كه اين مزونها، خيلى بيش از آنكه فر آي

 و دو نوترينو تجزيه شود، كه در آن صور

 يروتونها و نوترونها مربوطند به تبادل دائمى مزونهاى مابين آنها، اين نعل و انفعال بـايد

برقرار باشد:

$$
\mathbf{P}+\mu^{-} \longrightarrow \mathbf{n}^{\prime}+\mathbf{r}^{\cdot}
$$

از روى شدت نيروهاى هستهاى مى توان تخمين زد كه اين نعل و انفعال بايد فعل و انفعال

 يقين ״' 1 • • بار كوجكتر نبودند! مفهوم اين جنين است كه اشتهاى هسته بـراى خـوردن

مزونها، جند ميليون بيليون بار كوجكتر از آن است كه براى يكك نيروى تبادل به اندازه

 ديگر توجهى يش از آنحه سگك به يونجه دارد به آنها نداشتند.

اينها در نتيجهٔ تصادم اشعهٔ كيهانى ابتدايى (كه اصولاً پروتونهاى بسيار پر انزرّى هستند) با
 (سطح زمين نمى آيد. قسمت بالاى (شكل

 دارد، و سـه نــوع بــيون (

$$
\pi^{\cdot}-\gamma \gamma
$$

هست اتمى و ذرات ابتدايى O
در طى سالهاى بعد انواع و اقسام ذرات يافت شده يىدريى، بـر سـر فـيزيكدانـان

 حبابهاى گاز تشكيل شده در محيطى مايع، مانند ئيدروزن، مايع را دا به كار مار مى برند. بار با با آنكه معلومات واقعى ما دربارهٔ ذرات ابتدايى بسرعت در حال انزايش است، هر كوشار اسشى برایى
 شده است، طبيعتى صرفاً پديدهاى داشتهاند.

خواص ابتدايى ماده

براى دركت آنها با مانع سختى روببرر مىشود و، تاكنون مهن نظربهمايى كه در اين زمنه داده شده است، طبيعى صرفأ بديدهاى
دلشتَاند.

از نظر ديد در آينه

اگر در جايى يكك لنگءّ كفش بيدا شود، به يقين، لنگّة ديگر نـيز در نـزديكى آن است؛ در جايى زير تخت يا صندلى. اين موضوع در مورد يك؛ لنگءٔ دستكش، جوراب، و
rYd O مست\& اتمى و ذرات ابتدايى
بسيارى حيزهاى ديگر نيز واتعيت دارد. اما قلب همُ مردم در طرف جبِ بدن، و آيانديس Tآنان در طرف راست است. يكت واقعيت اساسيتر زيستشناسى اين است كه مولكولها هروتين كه هر موجود زنده را تشكيل مىدهند، خواه آن موجود آميب باشد يا انسان يـا
 تقارن راست بر سطع كرهة زمين وجود ندارند. اما بسيار عجيب است كـه هـر وتـ يك

 حيات بر سيارة ما، دو جهان حياتى وجود داشته است: يكى راست و ديگرى جی. جرد جون
 نبردى ميان آنها درگرفته كه در آن يكى از آن آن دو ديگرى آي را الز ميان برده است.
 فيزيكى فرايند ديگرى يافت شده كه درست شبيه به تصوير فرايند اول در يك آينى آينه بوده

 مورد ذرات ابتدايى درست نباشد.

 موضوع درست باشد اصل تقارن آينهاى نيز درست درمى آيد، و تصوير آينهاى نوترون در حال تلاشى مشابه خواهد بود با نوترون اصلى. زيرا تنيا تنها كارى كه برايى منطبق ساختن

O سرگذشت فيزيك
آنها بر يكديگر بايد كرد وارونه كردن يكى از آنهاست. امـا اگـر الكترون هـميشه در يكسو صادر شود (شكل . .

 مورد تلاشى مومزون بهدست آمد.

 كجاست؟ نمىدانيم و، تا وتى هم كه جنس و طبيعت اساسى ذرات ابتدايى دركك نشود، نخواهيم دانست.

هسته اتمى و ذرات ابتدايى YYY O

آيندهُ علم فيز يك
از آنحه قبلاً گفتيم آشكار مىشود كه آيندهٔ عـلم فيزيكت در مطـالعات و درك

 دانست كه ماده شامل قسمتهاى خرد مجزايى است، و اكنون رفته رفته نادرستى اين فرض

 نسبت
 جهل كامل بهسر میبريم. نمىدانيم كه هرا يكت بـار بـرقى هــميشه مـقدارى را دارد كـهـ

○ YYA
FVV $\times 1$.-1.
 (

 جرا به اينگونه مسائل مىانديشند. مثلاً بار برقى ابتدايى را درنظر بیگيريم. دانير انسته شده است

 واحدهايى راه.C.G.S يا M.K.S يا هر سلسله واحدهاى ديگر، اختيار كنيم (مشروط بـر

 ها Vه V اي
 راكه به كار بريمَ يوسته به اين فرمول مى ارسيم:

$$
\mathrm{T}=\tau / r \wedge \mu \sqrt{\frac{\mathrm{l}}{\mathrm{~g}}}
$$

 شده است مرتبط سازند، معلوم مىشود كه نظرى برای بهدست آوردن اين فرمول به كار رود، معلوم خواهو اهد شار شد
 $\frac{\text { hc }}{\text { c }{ }^{\gamma}}$

(عكس "ثابت ساختمانى خرد") بهوسيلة عبارت رياضى معينى بهدست مى آيد كه مـقدار عددى آن برابر است با

 7 خ خF. خواهد داشت. جون مربعها در هر دو طرف قطر مشا

اصلاحى " ساخت كه مستلزم يك واحك واحد اضافى بود.

 آن سعى شده نشان داده شود كه شعبدهبازى با اعداد تا جه اندازه خطرناك است، جنين

○ CA •

تذكراتى در بارهٔ ,نظرئوكوانتومى دماى صفر درجه\&
يك شبكه متبلور شش وجهى را درنظر بغيريم. صفر مطلق آن، بـو سيلة مسنجمد
شدن تمام درجات آزادى آن مشخص مىشود كه البته شامل حركت الكترونها بر روى
 گذشته از الكترونها، شبكة متبلور محتوى همان تعداد ثروتون نـيز هست. بـراى آنكــ بهدماى صفر درجه برسيم، بايد بههر نوترون (يعنى يكث پروتون به علاوه يكك الكترون) درج $\frac{r}{a}-1$ روى مدارش منجمد شده است. بنابراين براى دماى صفر درجه مقدار زيـر را بـهدست مى آوريم:
د.

با فرض اينكه

$$
T_{.}=-r v r^{\circ}
$$

كه با مقدار تجربى كاملاُ سازگار است. متو جه مىشويم كه نتيجهُ بهدست آمده هيجّ ربطى
به انتخاب شبكة متبلو ر ندارد.
البته رابطه عددى بالا ميان YV I FV تصادف صرف است. زيرا، در حالى كـه يكك عدد محض كامل است، دماى صفر مطلق بـهوسيلة اعـداد مـختلف بـهدست
 فارنهايت يا رئومور، را به كار مىبريم. پس از انتشار اين يادداشت ناشر مجله كه يكى از از فيزيكدانان برلن بهوى نوشته بود كه مقالهاش مسخره بوده اسر است، نامهار اسى به مؤلفان نوشت كه در آن زمان در دانشگاه كيمبريج كار مىكردند. سيس جوابى از مؤلفان رسيد كه از اين اشتباه اظهار تأسف كرده، اما اطمينان داده بودند كه يادداشت از لحاظ ريكر روش فيريكدانان
"Al O هسته اتمى و ذرات ابتدايى
براى ساختن نظرية خودشان جنبةُ شوخى داشته است. پس از اين در شماره بعدى همـان مجله، يادداشتى از ناشر به اين مفهوم جاب شد كه اميدوار است هـئ خواندگــان مـجـله دركك كرده باشندكه معالة بك، بته، وريزلر مسخرهاى بيش نبوده است. و همين موضوع سر Tرثر ادينگتن را عصبانى كرد! همةٌ اين وقايع، در حدود سى سال يسش روى داد داد. اما هنوز هم نمىدانيم كه هرا اين اين رقم l ا است و عدد ديگرى نيست، و آيا "توضيع" ادينگتن صرفاً تهادفى بوده است

 دارد كه شعبءّ بسيار مهم و وسيعى از رياضيات است. فيزيكدانان در تلاشهاى خود بـراى وري حل معماى طبيعت اغلب در جست و جوى كمكك رياضيات محض هستند، و در بسيارى موارد نيز آنرا بهدست آوردهاند. وتتى كه اينشتين مى
 انتظار آن يافت. وتتى كه هايزنبرگك در جست و جوى نوعى رياضيات نامتعارفى بود تـا

 دركك معماهاى طبيعت مدد كنند.

 جرمى را برحسب سرعت (C)، عمل (h)، و يكت ثابت عددى بيان كند، بايد شامل يكت

طول هم باشد. يعنى توان نوشت:
طول × سرعت A

43) Topology

O Mar سرگذشت فيزيك

معت جند دهه فيزيكدانان نظرى به اين اميد بودند كه طول در حدود مرد

 ممكن است تصادفى بيش نباشد، اما احتمال جنين تصادفى يك در بر بيلونهاست! و اگر يك
rAF O هسته اتـى و ذرات ابتدايى
تصادف نيست، جه معنايى دارد؟ آيا رديف (ااعداد خاص):

$$
19 ; 1 v ; 17 ; 1 r \frac{1}{r} ; v ; r ; 1 \frac{1}{r}
$$

را مىتوان براساس نظريهُ معقولى توضيح داد؟ آيا ممكن است مثلاً وابسته به نظريهُ اعداد بوده و رابطهاى با رديف اعداد اول يا رديفهاى جالبترى از اع اعداد داشته باشد؟ يا يا آنكه بيشتر
 هجار بعدى رابطه دارد؟ هيج يك از از اينها بر ما معلوم نيست. اما با بايد اميد داشته باشيم تلاش دانشمندان فيزيك نسل آينده اين مسائل را به حل بيروزمندانهاى خواهد رساند.

فهرست راهنما(نمايه)

TT Tور (واحد شدت جريان برق): ז 7 T TQ T آنالن در فيزيك

آنود:
Tآهنرباهاى برقى:
Yף - Yr

آزمـايش مـايكلسن - مـورلى: 19ه ا

TYA: Tآمار
Tارگيرى بوش - اينشتين:
YIY: آمارگيرى فرمى - ديرك
Tارگيرى كوانتومى: TI

ارشميدوس: - - 17 ~ وقانونش دربارهٔ اجسام شناور	1
و غوطهور: 1F - 7 - 7 ~ و قانونش	
درباره اهرمها: 7 -	ابت: 17
VI ارگك	'ابرخ:
AP - A . استاتيك، سيالها	
استن:	اتاق حبابى:
Y اسك	
Y. اسكندركبير / اسكندر مقدونى:	Y.F6.r.r
اسو،(esu) واحد الكتروستاتيك:	اتكينس،
\| اشتفان،	اتم:
PY7 اشع	
اشr - - rrn	¢¢.
YQ . اشعهُ ايكس:	اثرينج:
اشعة بتا:	Y•ه
YAY GYFA GYPV :اشعه	YAY 6YV. ${ }^{\text {¢ }}$
Y اشعه̇ كانالى:	
اشعهٔكيهانى:	17-17 - اجسامشناور وغوطهر،
rvrırı	V7 ادمز
rrl - اشوه́	r^1 - rva ravat
リ^^ \IV ،V9 6VY:	ارتعاش:
	ارتعاشات عرضى:
Hrl ¢rlr	ارسطو:

PAY O نهرست راهنـا (نـايه)

Yو 91 |مواج خلبان
اصل تركيبى ريد برگ: YVQ
r.v : احل دوم پاولى

اصول:-ّ ناتوراليس برينسيياماتماتيكا VV (Y) اعتدالين:

افلاطون: ه

YAV،Y اكسيزّن
IVY - IV - القاى برقاطيسى
القاى برقى: Pq

YVY الكترومترها
 (YTY (YDY (YD) (آYY: 6Y母F 6Y१) - YヘF 6Y7q

الكترونهاى خر: r. F.
 الكتريسيته شيشهاى: IAY - IFQ اليزابت اول، ملكئ انگليس: I PV

اليس: צץr
امو (emu)، واحد الكترومانيتيك: ایه
امواج برةاطيسى (نور): Yه

سرگذشت فيزيكت

كYVY 6Y79 ، كوانتوم نورى：
～Y～$~$～
：و نــــور：YFF GFFY GVV

پارها

تبديلات لورنس：YIY
YIY GYIY ：انقباض نسـبيتى طـول
～

جـــــاذبه：

（ 1 －rq9
rvケ،ャワ

باتريهاى برقى：
بارتولين［اراسموس］：Y •
باريوم：
بالمر：•

الو ینهايمر، رابرت：• PD
اورانيل：ها
اورانـيوم：
YDF－YFQ GY M ，$Y Y F$
اورستد، هانس كريستيان：• 17 － 17
اهرمها، قانون： 9 －

170
6YА • GYV9 6Y

ئيدروستاتيك： 1
ايزوتويها：Y
MFI（FF．ايستانبرق
ايــنشتين، آلبـرت：～و نـظرئَ نسـبيت

～و یديدههای نورى و مغنـاطيسى：

～و حـركت بـراونـى：چזا～و

「ג9 ○ نهرست راهنـا（نمايه）

بوث：•

 ～YVV－YVD：～
 ،rFq：و～～～～ rYV
 راذر فـــرد：YVA～و احـل ابهـام：

$$
r .1-r 9 q
$$

－IYY ، IYV بولترمـــــان، لودويكت
rll 11 f
بونزن، رابرت ويلهلم：IFY
بونزن، هشعل：بو

A1،A• • باسكال، بلز
YAY：باشن، فردريش
باول：بیY
باولى：YY
（YY）－YIT بـرابـرى جـرم－انـرزی：
rv．،raN
براون، رابرت： 7 Y
rv ：براهه، تيكو
برق：IFV
－1＾•،1VA،17Y－17• برقاطيس
1ヘィ
برگڭ（يدر）：Y
برگی（پسر）：Y
برقنما：• 10
برقنماى برگى：• 1Δ برمسترا هلونگ：بركي：بر
 برنويى،

AY، بیA－YY：بلميوس، كلاوديوس
بك：بی
بكرل، هانرى：ها 1 با

بلكت：＾r
بمب اتمى：• بمبهاى هستهای：

 	YFV ،
P-Y F F F	
	¢YY
Y ${ }^{\text {- }}$	پروتون سبك:
(YD) - YPA : تــامسن، جوزفجهـ،	*
	یروتونها: •rג
If 7 F	prpgr.
	rva بروتين:
YIr	، كرينسييا ماتماتِكا
YYV GY\|	Y. ${ }^{\text {P }}$
Y\|Y FY I I : تبديلات مختصات	
تون:	
IAr	YV :
	بلوتونيوم:
II^: ترموديناميك	
تريتيوم: •	بولونيوم:
	بيون:
FQP : تعميركاه خيالى (\%	
YQ	
TV :تفسير مكانيكى	
Fvه	FVY

Mq 1 ○ نهرست راهنما (نمايه)

YD. ${ }^{\prime \prime} F V$ GFD

๔
جاب:

جدويك، جيمز: • - جيمبرلين: 9

حزارت: l v

حرارت، نظريه حـركتى: 1YF - ITQ

 YYI (V) - 79 :حركت

VV :تقديم اعتدالين
تكرنگك كنده: ra
تلاشى آلفا: • •

تلر، ادوارد: FV

 توئون: YVF

توريوم: تو
تيوو، مرل: • هr

ثابت بدون عدد: YVA ثVA:ثابت ساختمانى خرد

C

- YYA , IVV GFA 6FF 6FY: جاذب

YF. GYY (YY)
جاذبه زمينى: IfA
جبر: Y، Y Y
YI: جت

$$
\text { دمانما: A• - - • } 11
$$

دماى مطلق：1－1－ 9
Y Y دو بيرن：
 IDY، IFQ：دوفى، شارل فرانسيس

ديركك، بـول آدريـن مـوريس：1•ن－ YVV،け・＾ v ：دين، واحد
 ديوداتى، الا： 9 ه ديوى، ممفرى： 179

 ذرات ابـستدايـى：چ
rvィ（rvo
 rVA ،rVV ،ケp7

rrer

 ID ،Tf ،fA ،fV ،FY حساب roq－r
 I．r

خازنها： 101

$$
\begin{aligned}
& \text { دالتن، جان: YPD : دايرةالبروج } \\
&
\end{aligned}
$$

I9－IV｜V II：درباب زندگى ماركلوس
دربارة اجسام شناور： 10 v：درباره́ تعادل سطوح دربارة روانبرق الجسام متحرك：Y Y Y IA• ：دربارة نظرئُ منحنيهاى غلتان

دماسنجها：I•－II

نهرست راهنـا (نمايه) ○
رونتگن، ويـلهم كـونراد: YAF - YAY

$$
\text { زنجير ستونيوس: } 9 \text { Y }
$$

 زندگى چيست: هr

زیヶ زومرفلد، Tرنولد
زير درياييهاى اتمى:
زيلارد، لئو:

زنس، هانس: FF9

راديـو Tكتيويته: וץץ,

راديوم:

: YVV ‘YVA ، 7 ~

~ و يروتون: Q ه

~ و و نوترون:
رامفرد، كنت: ال 11
|F7، 1FD: رزونانس (تشديد)
رنگين كره: وزا

روانشناسى: ه
روزنفلد، لثون: پY
روزولت، فرانكلين: روز
روسى، برونو:
ومر، اولائوس: • 19

علوم سياسى： 7 YAY

عمل متقابل مغناطيسى： $1 \Delta \Delta$ ، $1 \Delta F$ $\dot{ف}$

6YFV ،1AY－ITه：فــاراده، مــيكل：

 فـــرمى، انــريكو：دr اr، • •
 فرنل، اوگوستن：Y
YYI ،YY－فعل و انفعالات هستهاتى نعل و انفعلات همجوش زنجيرى：MFQ YVY－Y 79 وتوالكترونها ｜F7：فوتوسفر Y．Y Y Y Y

$$
\begin{aligned}
& \text { صوت : انتشار~: Irq - Irv } \\
& \text { سرعت~: } 19 \text { سر }
\end{aligned}
$$

ضد يروتونها： 9 • 9 •
 †｜•

طVF ：طبيعت كوانتومى انرزى تابشى
YYI：طرح مانهاتن：طول： Yワ＾－Yッチ：طول موج طيفنغارى：YAF
قضئُ فيثاغورس: Vه

$$
1 V \Delta \text { IVI GFQ }
$$

Vr ：قم زمينى
قوانين گازها： 9 • 1 ج

كا كايتسا، یتر：YQ كاتو پتريك：Y Y Y Y
كاتود: I AY

Y
 كازيمير، كاس：YVV rav كاكر

YVF－YVY：كامتن، آرثر كونديش، هنرى： كاهش جرمى：YAA
 rangrav，rar，r YPV ك ك 6 F 7 ： rهA كريحفيلد، جارلز

نوكو：•191919
TAF GUH
 TF 6F－Y：Yيثاغورس：
 1906194
（افيزيكال ريويو）：• هr
｜F｜قانون استفان－بولترمان
قانون اهم： 17 1 د
قــانون بــرابـرى انـرزّى و جـرم ايــنشتين：
＾r
قانون بقاى زندگى：

قYI ：قانون تعادل
 アフา－ケาศ

F－Y قانون فيثاغورس مربوط به تارها：
｜F｜｜قانون وين
قا قرقره：
قضئُ دو جملهاى： 7

M9Y O نهرست راهنما (نـايه)

كيهانشناسى:

گالوانومت: 17f
 كالوانيسم: $1 \Delta V$

 و ~ Pr - FI : تبديلات گاليلهاى مختصات: اY (Y) - FA : FIY ~ ~ و حـركت مـركب FY: Y Y 69• ،1^9 : و سـرعت نــور:
 حـركت تـندشونده: F^، FV ~ و قوانين سقوط: FF GF ، يادداشتهايى

Fاوس، كارل فريدريش: IFA گايگر: rır گايگر، هانس: اک

كسى: YVF 1^^، ، كشسانى:

كلاوديوس بطلميوس: Y - Y Y
كلاوزيوس، رودولف: 11^

كلوين، لرد: كهو
كندساز: rar

كوانتوم، قانون: YFD
كوانتومهاى انرزی: YVV

rar ،rAl ،rva ،rva
كويرنيك، (نيكولاوس كويرنيكوس): هو

كوسموترون: كFY
كوری، بير: كIV
riv، كوری، سكلودوفسكا:
كولن:
| DF ، كا كولن، شارل اوگوستن
كوندن، ادوارد: هr
كووان، كلويد:
|F7: كيرشهوف، گوستاور

M99 ○ نهرست راهنما (نمايه)

مكسـول، جـيمز كـلاركت: ~ بـه مــزلئ

 و \sim ~ $\operatorname{\sim }$ YFY ،YPI ،YIV
 ~ ~ و منحنى توزيع سرعت:
 |^9 مندليف، دميترى:

 r.P،19A : مورلى
vr موشكها: r7f - rar
(YFY (YF) ،1^9 مـيدان برقـاطيسى:
rva
ميدان نيروها: 1V9 FYY مينكوفسكى

مخروط نورى: MYF
 مدار گالوانيك: 170 مدل اتمى راذرفرد: Y Y Y - Y WF - IYY: مرغ غواص مرغ غواص رإنى: IYF - IYY

$$
\text { مزوترون: } 7 \text { r }
$$

مزوتوريوم:
rVr :K مزون
مزونها: •
1r^، ، مسير آزاد:

معادلة شرودينگر:

- IVY ،VI ،IFA ،FV: مغناطس
iva

مقطع عرضى:
HZ TV ،

YI : مكانيك
مكانيك سماوى:

(1^ฯ ،1^А : نظرية برتاطيسى ~

191
نظرية اعداد:
نظرية تابش حرارتى ماكس پلانكک : 7 Y 7 6YqF 6YAY 6YVY 6Y7A -

Y99،ヶ9ه
نظرئ حـركتى حـرارت: IYF - IYV

> ץ^. ، rv^
'YVV YVA : نظرئ مدارهاكوانتومى بور

- YFl،IVV :نظريهُ مـيدان يكـنواخت
pfr
نــظريه نسـيتى گـرانش: YYA - YYA
Yヶ7
raq-rav،rar،ral:نظرئهايزنبرگ
نيرو: ^^

YIV
 17

ناتوراليس هرينسييياماتماتيكا/اصول : 7 - 7 Y. Δ ، AF ،VQ ، V.
(|ناتورويسنشتانت):
نئون: YАТ
نيتونيوم:
نجوم: نج -

r.a cr.f
r. D - Y. Y نسبيت حركت
ry - نوبل، آلفرد

نور: - IY

- |FY از ~|F|

1Fף - IFF:~~ PV.

نیN |FA نيمكرههاى ما گدبورگك نيوتن، آيزك : اصول ~: 7 ا تـلسكوب

 زندگی ~: ץ
ولتر: va
ويتسزكر: ra^،
YFI: ويل، كارلفون هرمان

|f| وين، ويلهلم
\bullet 79 ~ و محاسبات: 7 ~

RFA، مابل، ادوين: PY : هارون الرشيد人9:

هان، اوتو:

اذن.اينكه آدمى درمدرسه قسمتهاى مختلف فيزيك درا در در كلاسهایى متعدد بخوا اند وخودرا برا براى امتحان اين درس درميان درسهاى

 و كوانتوم و نسبيت و هستئ آتوم و اجزا

 نسل آ ينده اين مسائل را به حل پيروزمندانهاى خو اهو اري رسا نيده.

[^0]:

[^1]: " . .

 بعدى به

